More Frequent, Longer, and Hotter Heat Waves for Australia in the Twenty-First Century

Tim Cowan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Tim Cowan in
Current site
Google Scholar
PubMed
Close
,
Ariaan Purich CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Ariaan Purich in
Current site
Google Scholar
PubMed
Close
,
Sarah Perkins Australian Research Council Centre of Excellence for Climate Systems Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Sarah Perkins in
Current site
Google Scholar
PubMed
Close
,
Alexandre Pezza School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Alexandre Pezza in
Current site
Google Scholar
PubMed
Close
,
Ghyslaine Boschat School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Ghyslaine Boschat in
Current site
Google Scholar
PubMed
Close
, and
Katherine Sadler School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Katherine Sadler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extremes such as summer heat waves and winter warm spells have a significant impact on the climate of Australia, with many regions experiencing an increase in the frequency and duration of these events since the mid-twentieth century. With the availability of Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, projected changes in heat waves and warm spells are investigated across Australia for two future emission scenarios. For the historical period encompassing the late twentieth century (1950–2005) an ensemble mean of 15 models is able to broadly capture the observed spatial distribution in the frequency and duration of summer heat waves, despite overestimating these metrics along coastal regions. The models achieve a better comparison to observations in their simulation of the temperature anomaly of the hottest heat waves. By the end of the twenty-first century, the model ensemble mean projects the largest increase in summer heat wave frequency and duration to occur across northern tropical regions, while projecting an increase of ~3°C in the maximum temperature of the hottest southern Australian heat waves. Model consensus suggests that future winter warm spells will increase in frequency and duration at a greater rate than summer heat waves, and that the hottest events will become increasingly hotter for both seasons by century’s end. Even when referenced to a warming mean state, increases in the temperature of the hottest events are projected for southern Australia. Results also suggest that following a strong mitigation pathway in the future is more effective in reducing the frequency and duration of heat waves and warm spells in the southern regions compared to the northern tropical regions.

Corresponding author address: Tim Cowan, CSIRO Marine and Atmospheric Research, PMB1, Aspendale VIC 3195, Australia. E-mail: tim.cowan@csiro.au

Abstract

Extremes such as summer heat waves and winter warm spells have a significant impact on the climate of Australia, with many regions experiencing an increase in the frequency and duration of these events since the mid-twentieth century. With the availability of Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, projected changes in heat waves and warm spells are investigated across Australia for two future emission scenarios. For the historical period encompassing the late twentieth century (1950–2005) an ensemble mean of 15 models is able to broadly capture the observed spatial distribution in the frequency and duration of summer heat waves, despite overestimating these metrics along coastal regions. The models achieve a better comparison to observations in their simulation of the temperature anomaly of the hottest heat waves. By the end of the twenty-first century, the model ensemble mean projects the largest increase in summer heat wave frequency and duration to occur across northern tropical regions, while projecting an increase of ~3°C in the maximum temperature of the hottest southern Australian heat waves. Model consensus suggests that future winter warm spells will increase in frequency and duration at a greater rate than summer heat waves, and that the hottest events will become increasingly hotter for both seasons by century’s end. Even when referenced to a warming mean state, increases in the temperature of the hottest events are projected for southern Australia. Results also suggest that following a strong mitigation pathway in the future is more effective in reducing the frequency and duration of heat waves and warm spells in the southern regions compared to the northern tropical regions.

Corresponding author address: Tim Cowan, CSIRO Marine and Atmospheric Research, PMB1, Aspendale VIC 3195, Australia. E-mail: tim.cowan@csiro.au
Save
  • Alexander, L. V., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_SPM_FINAL.pdf.]

  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. Garcia-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, doi:10.1126/science.1201224.

    • Search Google Scholar
    • Export Citation
  • Berckmans, J., T. Woollings, M.-E. Demory, P.-L. Vidale, and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, doi:10.1002/asl2.412.

    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic pattern and trends. J. Appl. Meteor. Climatol., 52, 16181631, doi:10.1175/JAMC-D-12-094.1.

    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2013: A prolonged autumn heatwave for southeast Australia. Bureau of Meteorology Special Climate Statement 45, 11 pp. [Available online at http://www.bom.gov.au/climate/current/statements/scs45.pdf.]

  • Cai, W., T. Cowan, and M. Raupach, 2009: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, S. Borlace, and T. Cowan, 2011a: Does the Southern Annular Mode contribute to the persistence of the multidecade-long drought over southwest Western Australia? Geophys. Res. Lett., 38, L14712, doi:10.1029/2011GL047943.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. Hendon, 2011b: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, doi:10.1038/ngeo2009.

    • Search Google Scholar
    • Export Citation
  • Carril, A., S. Gualdi, A. Cherchi, and N. Navarra, 2008: Heatwaves in Europe: Areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Climate Dyn., 30, 7798, doi:10.1007/s00382-007-0274-5.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, doi:10.1038/nclimate1452.

  • Coumou, D., and A. Robinson, 2013: Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett., 8, 034018, doi:10.1088/1748-9326/8/3/034018.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P., J. Luterbacher, H. von Weissenfluh, E. Xoplaki, M. Brunet, and H. Wanner, 2007: Summer heat waves over western Europe 1880–2003: Their relationship to large-scale forcings and predictability. Climate Dyn., 29, 251275, doi:10.1007/s00382-007-0233-1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and M. Scherer, 2011: Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107, 615624, doi:10.1007/s10584-011-0112-y.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., G. Y. Ren, Z. C. Zhao, Y. Xu, Y. Luo, Q. P. Li, and J. Zhang, 2007: Detection, causes and projection of climate change over China: An overview of recent progresses. Adv. Atmos. Sci., 24, 954971, doi:10.1007/s00376-007-0954-4.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, doi:10.1002/jgrd.50150.

    • Search Google Scholar
    • Export Citation
  • Ellis, S., P. Kanowski, and R. Whelan, 2004: National inquiry on bushfire mitigation and management. Council of Australian Governments Tech. Rep., 451 pp. [Available online at http://www.dfes.wa.gov.au/publications/GeneralReports/FESA_Report-NationalInquiryonBushfireMitigationandManagement.pdf.]

  • Fischer, E. M., and C. Schar, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, doi:10.1038/ngeo866.

    • Search Google Scholar
    • Export Citation
  • Gosling, S., G. McGregor, and J. A. Lowe, 2009: Climate change and heat-related mortality in six cities. Part II: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int. J. Biometeor., 53, 3151, doi:10.1007/s00484-008-0189-9.

    • Search Google Scholar
    • Export Citation
  • Grose, M. R., I. Barnes-Keoghan, S. P. Corney, C. J. White, G. K. Holz, J. B. Bennett, S. M. Gaynor, and N. L. Bindoff, 2010: Climate futures for Tasmania: General climate impact. Antarctic Climate and Ecosystems Cooperative Research Centre Tech. Rep., 68 pp. [Available online at http://www.acecrc.org.au/Research/Climate+Futures.]

  • Grose, M. R., M. Pook, P. McIntosh, J. Risbey, and N. Bindoff, 2012: The simulation of cutoff lows in a regional climate model: Reliability and future trends. Climate Dyn., 39, 445459, doi:10.1007/s00382-012-1368-2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., A. AghaKouchak, and T. J. Phillip, 2013: Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett.,8, 034014, doi:10.1088/1748-9326/8/3/034014.

  • Hudson, D., A. Marshall, and O. Alves, 2011: Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Wea. Forecasting, 26, 257279, doi:10.1175/WAF-D-10-05041.1.

    • Search Google Scholar
    • Export Citation
  • Jones, D., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Karoly, D., 2009: The recent bushfires and extreme heat wave in south-east Australia. Bull. Austr. Meteor. Oceanogr. Soc., 22, 1013.

  • Kent, D., D. Kirono, B. Timbal, and F. Chiew, 2013: Representation of the Australian sub-tropical ridge in the CMIP3 models. Int. J. Climatol., 33, 4857, doi:10.1002/joc.3406.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., 2010: Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Climatol., 30, 89109, doi:10.1002/joc.1874.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, doi:10.1175/JCLI-D-11-00575.1.

    • Search Google Scholar
    • Export Citation
  • Le Tertre, A., and Coauthors, 2006: Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, 17, 7579, doi:10.1097/01.ede.0000187650.36636.1f.

    • Search Google Scholar
    • Export Citation
  • Lewis, S., and D. Karoly, 2013: Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett., 40, 3705–3709, doi:10.1002/grl.50673.

    • Search Google Scholar
    • Export Citation
  • Loughnan, M., N. Nicholls, and N. Tapper, 2010: Mortality–temperature thresholds for ten major population centres in rural Victoria, Australia. Health Place, 16, 12871290, doi:10.1016/j.healthplace.2010.08.008.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2009: Southern Africa summer drought and heat waves: Observations and coupled model behavior. J. Climate, 22, 60336046, doi:10.1175/2009JCLI3101.1.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, doi:10.1214/aoms/1177730491.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, O. Alves, H. H. Hendon, M. J. Pook, and J. S. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., doi:10.1007/s00382-013-2016-1, in press.

    • Search Google Scholar
    • Export Citation
  • Mastrandrea, M., C. Tebaldi, C. Snyder, and S. Schneider, 2011: Current and future impacts of extreme events in California. Climatic Change, 109, 4370, doi:10.1007/s10584-011-0311-6.

    • Search Google Scholar
    • Export Citation
  • McMichael, A., R. Woodruff, and S. Hales, 2006: Climate change and human health: Present and future risks. Lancet, 367, 859869, doi:10.1016/S0140-6736(06)68079-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Nairn, J. and R. Fawcett, 2013: Defining heatwaves: Heatwave defined as a heat-impact event servicing all community and business sectors in Australia. CAWCR Tech. Rep. 60, 96 pp. [Available online at http://www.cawcr.gov.au/publications/technicalreports/CTR_060.pdf.]

  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, doi:10.1175/JCLI-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2004: The changing nature of Australian droughts. Climatic Change, 63, 323336, doi:10.1023/B:CLIM.0000018515.46344.6d.

  • Nicholls, N., J. Uotila, and L. Alexander, 2010: Synoptic influences on seasonal, interannual and decadal temperature variations in Melbourne, Australia. Int. J. Climatol., 30, 13721381, doi:10.1002/joc.1965.

    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, and M. J. Reeder, 2013: The influence of tropical cyclones on heat waves in southeastern Australia. Geophys. Res. Lett., 40, 6264–6270, doi:10.1002/2013GL058257.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2011: Biases and model agreement in projections of climate extremes over the tropical Pacific. Earth Interact., 15, doi:10.1175/2011EI395.1.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 45004517, doi:10.1175/JCLI-D-12-00383.1.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and E. M. Fischer, 2013: The usefulness of different realizations for the model evaluation of regional trends in heat waves. Geophys. Res. Lett., 40, 57935797, doi:10.1002/2013GL057833.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, doi:10.1029/2012GL051120.

    • Search Google Scholar
    • Export Citation
  • Pezza, A., P. van Rensch, and W. Cai, 2012: Severe heat waves in southern Australia: Synoptic climatology and large scale connections. Climate Dyn., 38, 209224, doi:10.1007/s00382-011-1016-2.

    • Search Google Scholar
    • Export Citation
  • Risbey, J., M. Pook, P. McIntosh, M. Wheeler, and H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, doi:10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Sadler, K. J., A. Pezza, and W. Cai, 2012: Cool sea surface temperatures in the Tasman Sea associated with blocking and heatwaves in Melbourne. Bull. Aust. Meteor. Oceanogr. Soc., 25, 8083.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., T. Woolings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152, doi:10.1175/2010JCLI3728.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, doi:10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2008: An interpretation of Australian rainfall projections. Geophys. Res. Lett., 35, L02702, doi:10.1029/2007GL032436.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, doi:10.1002/joc.3492.

    • Search Google Scholar
    • Export Citation
  • Tong, S., C. Ren, and N. Becker, 2010: Excess deaths during the 2004 heatwave in Brisbane, Australia. Int. J. Biometeor., 54, 393400, doi:10.1007/s00484-009-0290-8.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and J. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, doi:10.1029/2012JD018020.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., R. García-Herrera, J. Diaz, I. Trigo, and M. Valente, 2005: How exceptional was the early August 2003 heatwave in France? Geophys. Res. Lett., 32, L10701, doi:10.1029/2005GL022410.

    • Search Google Scholar
    • Export Citation
  • Tryhorn, L., and J. Risbey, 2006: On the distribution of heatwaves over the Australian region. Aust. Meteor. Mag., 55, 169182.

  • Turner, N., N. Molyneux, S. Yang, Y.-C. Xiong, and K. Siddique, 2011: Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pasture Sci., 62, 445456, doi:10.1071/CP10372.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C., and Coauthors, 2011: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, doi:10.1175/2010JCLI3475.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., S. Y. Yim, J. Y. Lee, J. Liu, and K. J. Ha, 2013: Future change of Asian–Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn.,42, 83–100, doi:10.1007/s00382-013-1769-x.

  • Wu, Z., Z. Jiang, J. Li, S. Zhong, and L. Wang, 2012a: Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Climate Dyn., 39, 23932402, doi:10.1007/s00382-012-1439-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., H. Lin, J. Li, Z. Jiang, and T. Ma, 2012b: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, doi:10.1029/2011JD016908.

    • Search Google Scholar
    • Export Citation
  • Zanobetti, A., and J. Schwartz, 2008: Temperature and mortality in nine US cities. Epidemiology, 19, 563570, doi:10.1097/EDE.0b013e31816d652d.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., P. Liang, A. Moise, and L. Hanson, 2012: Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices. Climate Dyn., 39, 24652486, doi:10.1007/s00382-012-1289-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5192 1946 123
PDF Downloads 3105 957 89