Southern Hemisphere Cloud–Dynamics Biases in CMIP5 Models and Their Implications for Climate Projections

Kevin M. Grise Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Kevin M. Grise in
Current site
Google Scholar
PubMed
Close
and
Lorenzo M. Polvani Lamont-Doherty Earth Observatory, Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study quantifies cloud–radiative anomalies associated with interannual variability in the latitude of the Southern Hemisphere (SH) midlatitude eddy-driven jet, in 20 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models (type I models), total cloud fraction is reduced at SH midlatitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models (type II models), this dynamically induced cloud radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with two independent satellite datasets indicates that the cloud–dynamics behavior of type II models is more realistic.

Because the SH midlatitude jet shifts poleward in response to CO2 forcing, the cloud–dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the midlatitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet also shifts rapidly poleward with CO2 quadrupling, but it is not accompanied by cloud radiative warming anomalies, resulting in a smaller initial global-mean surface temperature warming.

Corresponding author address: Kevin M. Grise, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY 10964-8000. E-mail: kgrise@ldeo.columbia.edu

Abstract

This study quantifies cloud–radiative anomalies associated with interannual variability in the latitude of the Southern Hemisphere (SH) midlatitude eddy-driven jet, in 20 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models (type I models), total cloud fraction is reduced at SH midlatitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models (type II models), this dynamically induced cloud radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with two independent satellite datasets indicates that the cloud–dynamics behavior of type II models is more realistic.

Because the SH midlatitude jet shifts poleward in response to CO2 forcing, the cloud–dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the midlatitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet also shifts rapidly poleward with CO2 quadrupling, but it is not accompanied by cloud radiative warming anomalies, resulting in a smaller initial global-mean surface temperature warming.

Corresponding author address: Kevin M. Grise, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY 10964-8000. E-mail: kgrise@ldeo.columbia.edu
Save
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, doi:10.1029/2007GL032273.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012a: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619635, doi:10.1007/s10712-011-9152-0.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012b: Forcing, feedbacks, and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, doi:10.1029/2011RG000363.

  • Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemisphere eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 3244–3250, doi:10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Colman, R. A., and B. J. McAvaney, 2011: On tropospheric adjustment to forcing and climate feedbacks. Climate Dyn., 36, 16491658, doi:10.1007/s00382-011-1067-4.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 36883692, doi:10.1002/grl.50675.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, doi:10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., B. Medeiros, Y.-T. Hwang, A. Gettelman, J. Perket, and M. G. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616–622, doi:10.1002/2013GL058315.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. Norris, and X. Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359385, doi:10.1007/s10712-012-9175-1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hoffmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. J. Rutz, T. Reichler, and J. Lu, 2012: Breaking down the tropospheric circulation response by forcing. Climate Dyn., 39, 23612375, doi:10.1007/s00382-011-1267-y.

    • Search Google Scholar
    • Export Citation
  • Stott, P., P. Good, G. Jones, N. Gillett, and E. Hawkins, 2013: The upper end of climate model temperature projections is inconsistent with past warming. Environ. Res. Lett., 8, 014024, doi:10.1088/1748-9326/8/1/014024.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first- century energy budgets of the Southern Oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, doi:10.1007/s00382-008-0443-1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Y., and Coauthors, 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052184.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 942 464 163
PDF Downloads 388 73 5