How Much Has the North Atlantic Ocean Overturning Circulation Changed in the Last 50 Years?

Simon F. B. Tett School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Simon F. B. Tett in
Current site
Google Scholar
PubMed
Close
,
Toby J. Sherwin Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom

Search for other papers by Toby J. Sherwin in
Current site
Google Scholar
PubMed
Close
,
Amrita Shravat Scottish Association for Marine Science, Scottish Marine Institute, Oban, and School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Amrita Shravat in
Current site
Google Scholar
PubMed
Close
, and
Oliver Browne School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Oliver Browne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Volume transports from six ocean reanalyses are compared with four sets of in situ observations: across the Greenland–Scotland ridge (GSR), in the Labrador Sea boundary current, in the deep western boundary current at 43°N, and in the Atlantic meridional overturning circulation (AMOC) at 26°N in the North Atlantic. The higher-resolution reanalyses (on the order of ¼° × ¼°) are better at reproducing the circulation pattern in the subpolar gyre than those with lower resolution (on the order of 1°). Simple Ocean Data Assimilation (SODA) and Estimating the Circulation and Climate of the Ocean (ECCO)–Jet Propulsion Laboratory (JPL) produce transports at 26°N that are close to those observed [17 Sv (1 Sv ≡ 106 m3 s−1)]. ECCO, version 2, and SODA produce northward transports across the GSR (observed transport of 8.2 Sv) that are 22% and 29% too big, respectively. By contrast, the low-resolution reanalyses have transports that are either too small [by 31% for ECCO-JPL and 49% for Ocean Reanalysis, system 3 (ORA-S3)] or much too large [Decadal Prediction System (DePreSys)]. SODA had the best simulations of mixed layer depth and with two coarse grid long-term reanalyses (DePreSys and ORA-S3) is used to examine changes in North Atlantic circulation from 1960 to 2008. Its results suggest that the AMOC increased by about 20% at 26°N while transport across the GSR hardly altered. The other (less reliable) long-term reanalyses also had small changes across the GSR but changes of +10% and −20%, respectively, at 26°N. Thus, it appears that changes in the overturning circulation at 26°N are decoupled from the flow across the GSR. It is recommended that transport observations should not be assimilated in ocean reanalyses but used for validation instead.

Corresponding author address: Toby Sherwin, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, United Kingdom. E-mail: toby.sherwin@sams.ac.uk

Abstract

Volume transports from six ocean reanalyses are compared with four sets of in situ observations: across the Greenland–Scotland ridge (GSR), in the Labrador Sea boundary current, in the deep western boundary current at 43°N, and in the Atlantic meridional overturning circulation (AMOC) at 26°N in the North Atlantic. The higher-resolution reanalyses (on the order of ¼° × ¼°) are better at reproducing the circulation pattern in the subpolar gyre than those with lower resolution (on the order of 1°). Simple Ocean Data Assimilation (SODA) and Estimating the Circulation and Climate of the Ocean (ECCO)–Jet Propulsion Laboratory (JPL) produce transports at 26°N that are close to those observed [17 Sv (1 Sv ≡ 106 m3 s−1)]. ECCO, version 2, and SODA produce northward transports across the GSR (observed transport of 8.2 Sv) that are 22% and 29% too big, respectively. By contrast, the low-resolution reanalyses have transports that are either too small [by 31% for ECCO-JPL and 49% for Ocean Reanalysis, system 3 (ORA-S3)] or much too large [Decadal Prediction System (DePreSys)]. SODA had the best simulations of mixed layer depth and with two coarse grid long-term reanalyses (DePreSys and ORA-S3) is used to examine changes in North Atlantic circulation from 1960 to 2008. Its results suggest that the AMOC increased by about 20% at 26°N while transport across the GSR hardly altered. The other (less reliable) long-term reanalyses also had small changes across the GSR but changes of +10% and −20%, respectively, at 26°N. Thus, it appears that changes in the overturning circulation at 26°N are decoupled from the flow across the GSR. It is recommended that transport observations should not be assimilated in ocean reanalyses but used for validation instead.

Corresponding author address: Toby Sherwin, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, United Kingdom. E-mail: toby.sherwin@sams.ac.uk
Save
  • Bacon, S., 1998: Decadal variability in the outflow from the Nordic seas to the deep Atlantic Ocean. Nature, 394, 871874, doi:10.1038/29736.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., G. C. Smith, K. Haines, D. Anderson, T. N. Palmer, and A. Vidard, 2007: Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis. Geophys. Res. Lett., 34, L23615, doi:10.1029/2007GL031645.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034, doi:10.1175/2008MWR2433.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, Washington, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Berx, B., B. Hansen, S. Østerhus, K. Larsen, T. Sherwin, and K. Jochumsen, 2013: Combining in-situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland Channel. Ocean Sci. Discuss., 10, 153195, doi:10.5194/osd-10-153-2013.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989, doi:10.5670/oceanog.1991.07.

  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, doi:10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., A. Mujahid, S. A. Cunningham, and T. Kanzow, 2009: Adjustment of the basin-scale circulation at 26°N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the RAPID array. Ocean Sci. Discuss., 6, 871908, doi:10.5194/osd-6-871-2009.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and A. Santorelli, 2008: Global upper ocean heat content as viewed in nine analyses. J. Climate, 21, 60156035, doi:10.1175/2008JCLI2489.1.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, and P. Rhines, 2008: Arctic-subarctic ocean fluxes: Defining the role of the northern seas in climate. Arctic-Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds, Springer, 1–13.

  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34, 15481570, doi:10.1175/1520-0485(2004)034<1548:BCATEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., M. Visbeck, R. Zantopp, and N. Nunes, 2010: Interannual to decadal variability of outflow from the Labrador Sea. Geophys. Res. Lett., 37, L24610, doi:10.1029/2010GL045321.

    • Search Google Scholar
    • Export Citation
  • Haines, K., V. N. Stepanov, M. Valdivieso, and H. Zuo, 2013: Atlantic meridional heat transports in two ocean reanalyses evaluated against the RAPID array. Geophys. Res. Lett., 40, 343348, doi:10.1029/2012GL054581.

    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., and P. B. Rhines, 2009: Shifting surface currents in the northern North Atlantic Ocean. J. Geophys. Res., 114, C04005, doi:10.1029/2008JC004883.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Østerhus, 2000: North Atlantic–Nordic seas exchanges. Prog. Oceanogr., 45, 109208, doi:10.1016/S0079-6611(99)00052-X.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., W. R. Turrell, and S. Østerhus, 2001: Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe bank channel since 1950. Nature, 411, 927930, doi:10.1038/35082034.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., S. Østerhus, H. Hatun, R. Kristiansen, and K. Larsen, 2003: The Iceland Faroe inflow of Atlantic water to the Nordic seas. Prog. Oceanogr., 59, 443474, doi:10.1016/j.pocean.2003.10.003.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., S. Østerhus, W. R. Turrell, S. Jonsson, H. Valdimarsson, H. Hátun, and S. M. Olsen, 2008: The inflow of Atlantic water, heat and salt to the Nordic seas across the Greenland-Scotland ridge. Arctic-Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 15–44.

  • Hansen, B., H. Hátún, R. Kristiansen, S. Olsen, and S. Østerhus, 2010: Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic. Ocean Sci. Discuss., 7, 12451287, doi:10.5194/osd-7-1245-2010.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Huang, B., Y. Xue, A. Kumar, and D. W. Behringer, 2012: AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Climate Dyn., 38, 513525, doi:10.1007/s00382-011-1035-z.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, doi:10.1016/j.jmarsys.2008.11.026.

    • Search Google Scholar
    • Export Citation
  • Jonsson, S., and H. Valdimarsson, 2005: The flow of Atlantic water to the north Icelandic shelf and its relation to the drift of cod larvae. ICES J. Mar. Sci., 62, 13501359, doi:10.1016/j.icesjms.2005.05.003.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., P. Schlosser, D. W. R. Wallace, J. L. Bullister, and J. Blindheim, 2005: Water mass transformation in the Greenland Sea during the 1990s. J. Geophys. Res., 110, C07022, doi:10.1029/2004JC002510.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., W. B. Owens, and R. E. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52, 767785, doi:10.1016/j.dsr.2004.12.007.

    • Search Google Scholar
    • Export Citation
  • Lee, T., T. Awaji, M. A. Balmaseda, E. Greiner, and D. Stammer, 2009: Ocean state estimation for climate research. Oceanography, 22, 160167, doi:10.5670/oceanog.2009.74.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, doi:10.1029/2012GL052933.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 1321.

    • Search Google Scholar
    • Export Citation
  • Monterey, G. I., and S. Levitus, 1997: Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, 102 pp. [Available online at ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/Atlas14.pdf.]

  • Munoz, E., B. Kirtman, and W. Weijer, 2011: Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep-Sea Res. II, 58, 18481857, doi:10.1016/j.dsr2.2010.10.064.

    • Search Google Scholar
    • Export Citation
  • Olsen, S. M., and T. Schmith, 2007: North Atlantic–Arctic Mediterranean exchanges in an ensemble hindcast experiment. J. Geophys. Res., 112, C04010, doi:10.1029/2006JC003838.

    • Search Google Scholar
    • Export Citation
  • Olsen, S. M., B. Hansen, D. Quadfasel, and S. Osterhus, 2008: Observed and modelled stability of overflow across the Greenland-Scotland ridge. Nature, 455, 519524, doi:10.1038/nature07302.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152156, doi:10.1038/nature01729.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149, doi:10.1038/378145a0.

    • Search Google Scholar
    • Export Citation
  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 17441753, doi:10.1016/j.dsr2.2010.10.056.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and R. A. Wood, 1997: Topographic sensitivity studies with a Bryan–Cox-type ocean model. J. Phys. Oceanogr., 27, 823836, doi:10.1175/1520-0485(1997)027<0823:TSSWAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., S. L. Hughes, W. R. Turrell, B. Hansen, and S. Østerhus, 2008: Wind driven monthly variations in transport and the flow field in the Faroe-Shetland Channel. Polar Res., 27, 722, doi:10.1111/j.1751-8369.2007.00036.x.

    • Search Google Scholar
    • Export Citation
  • Smeed, D., and Coauthors, 2013: Observed decline of the Atlantic meridional overturning circulation 2004 to 2012. Ocean Sci. Discuss., 10, 16191645, doi:10.5194/osd-10-1619-2013.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climate Change, 54, 251267, doi:10.1023/A:1016168827653.

    • Search Google Scholar
    • Export Citation
  • Wang, W., A. Kohl, and D. Stammer, 2010: Estimates of global ocean volume transports during 1960 through 2001. Geophys. Res. Lett., 37, L15601, doi:10.1029/2010GL043949.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36, 20122024, doi:10.1175/JPO2957.1.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and R. R. Dickson, 2008: Transformation and fate of overflows in the northern North Atlantic. Arctic-Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds, Springer, 505–526.

  • Zickfeld, K., A. Levermann, M. G. Morgan, T. Kuhlbrodt, S. Rahmstorf, and D. W. Keith, 2007: Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Climatic Change, 82, 235265, doi:10.1007/s10584-007-9246-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 75 9
PDF Downloads 104 38 6