Consistency of Estimated Global Water Cycle Variations over the Satellite Era

F. R. Robertson * Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by F. R. Robertson in
Current site
Google Scholar
PubMed
Close
,
M. G. Bosilovich Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by M. G. Bosilovich in
Current site
Google Scholar
PubMed
Close
,
J. B. Roberts * Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by J. B. Roberts in
Current site
Google Scholar
PubMed
Close
,
R. H. Reichle Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by R. H. Reichle in
Current site
Google Scholar
PubMed
Close
,
R. Adler Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by R. Adler in
Current site
Google Scholar
PubMed
Close
,
L. Ricciardulli Remote Sensing Systems, Santa Rosa, California

Search for other papers by L. Ricciardulli in
Current site
Google Scholar
PubMed
Close
,
W. Berg Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by W. Berg in
Current site
Google Scholar
PubMed
Close
, and
G. J. Huffman ** Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by G. J. Huffman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology.

Over land, reanalysis VMFC and P − evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger than P − ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smaller P − ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date.

When integrated over the global oceans, E and especially P variations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially in E. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. The P variations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.

Corresponding author address: F. R. Robertson, Earth Science Office, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: pete.robertson@nasa.gov

Abstract

Motivated by the question of whether recent interannual to decadal climate variability and a possible “climate shift” may have affected the global water balance, we examine precipitation minus evaporation (P – E) variability integrated over the global oceans and global land for the period 1979–2010 from three points of view—remotely sensed retrievals and syntheses over the oceans, reanalysis vertically integrated moisture flux convergence (VMFC) over land, and land surface models (LSMs) forced with observations-based precipitation, radiation, and near-surface meteorology.

Over land, reanalysis VMFC and P − evapotranspiration (ET) from observationally forced LSMs agree on interannual variations (e.g., El Niño/La Niña events); however, reanalyses exhibit upward VMFC trends 3–4 times larger than P − ET trends of the LSMs. Experiments with other reanalyses using reduced observations show that upward VMFC trends in the full reanalyses are due largely to observing system changes interacting with assimilation model physics. The much smaller P − ET trend in the LSMs appears due to changes in frequency and amplitude of warm events after the 1997/98 El Niño, a result consistent with coolness in the eastern tropical Pacific sea surface temperature (SST) after that date.

When integrated over the global oceans, E and especially P variations show consistent signals of El Niño/La Niña events. However, at scales longer than interannual there is considerable uncertainty especially in E. This results from differences among datasets in near-surface atmospheric specific humidity and wind speed used in bulk aerodynamic retrievals. The P variations, all relying substantially on passive microwave retrievals over ocean, also have uncertainties in decadal variability, but to a smaller degree.

Corresponding author address: F. R. Robertson, Earth Science Office, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: pete.robertson@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version 2.1 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., J.-J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year tropical rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281293, doi:10.2151/jmsj.87A.281.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, doi:10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance. Elsevier, 179 pp.

  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data,5, 71–99, doi:10.5194/essd-5-71-2013.

  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and M. Lebsock, 2014: An update on oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 3957–3965, doi:10.1175/JCLI-D-13-00679.1.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16, 637656, doi:10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, doi:10.1029/2007GL031830.

    • Search Google Scholar
    • Export Citation
  • Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: Pacific pan-decadal variability. J. Climate, 21, 26342650, doi:10.1175/2007JCLI2012.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., R. Atlas, C.-L. Shie, and J. Ardizzone, 1995: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123, 24052425, doi:10.1175/1520-0493(1995)123<2405:EOSHAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, R. Atlas, and C. L. Shie, 2001: The Goddard satellite-based surface turbulent fluxes dataset version 2 (GSSTF 2.0) [global (grid of 1° × 1°) daily air–sea surface fluxes from July 1987 to December 2000] distributed by Goddard DISC. [Available online at http://disc.sci.gsfc.nasa.gov/gesNews/gsstf_version_3_released.]

  • Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrieval, version 2 (GSSTF2). J. Climate, 16, 32563273, doi:10.1175/1520-0442(2003)016<3256:STHAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and A. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, doi:10.1175/JCLI-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on U.S. precipitation during 1923–2010. Climate Dyn., 41,633–646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate,10,29432962, doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 18311397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gobron, N., B. Pinty, F. Mélin, M. Taberner, M. M. Verstraete, M. Robustelli, and J.-L. Widlowski, 2007: Evaluation of the MERIS/ENVISAT FAPAR product. Adv. Space Res., 39, 105115, doi:10.1016/j.asr.2006.02.048.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20, 40334046, doi:10.1175/JCLI4227.1.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and R. F. Adler, 2013: Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or Pacific decadal variability? Climate Dyn., 40,30093022, doi:10.1007/s00382-012-1443-8.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J. App. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and C.-L. Shie, 2011: Decadal trends and variability in Special Sensor Microwave/Imager (SSM/I) brightness temperatures and Earth incidence angle. RSS Tech. Rep. 092811, 53 pp. [Available online at http://images.remss.com/papers/tech_reports/hilburn_SSMI_EIA_TB_RSS_Tech_Rpt_092811.pdf.]

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., G. A. Wick, and F. R. Robertson, 2009: Improved multi-sensor approach to satellite-retrieved near-surface specific humidity observations. J. Geophys. Res.,114, D16303, doi:10.1029/2008JD011341.

  • Janowiak, J. E., and P. Xie, 1999: CAMS_OPI: A global satellite-rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 33353342, doi:10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) ocean-atmosphere heat, momentum and freshwater flux atlas. Southampton Oceanography Centre Rep. 6, 30 pp.

  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosci. Discuss., 6, 52715304, doi:10.5194/bgd-6-5271-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Z. Xie, and M. Huang, 2003: A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model, J. Geophys. Res.,108, 8613, doi:10.1029/2002JD003090.

  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, doi:10.1029/2007GL032419.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi:10.1029/2011GL050337.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., A. G. Barnston, and D. G. DeWitt, 2013: Tropical Pacific forcing of a 1998–1999 climate shift: Observational analysis and climate model results for the boreal spring season. Climate Dyn., doi:10.1007/s00382-013-1891-9.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., P. R. Thompson, and M. Lander, 2012: Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett., 39, L13602, doi:10.1029/2012GL052032.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM–2012-104606, Vol. 28, 124 pp.

  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. Discuss., 10, 769805, doi:10.5194/hessd-10-769-2013.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948–2004. Part I: Forcing data and evaluation. J. Hydrometeor., 7, 953975, doi:10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Toure, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., G. J. M. De Lannoy, B. A. Forman, C. S. Draper, and Q. Liu, 2014: Connecting satellite observations with water cycle variables through land data assimilation: Examples using the NASA GEOS-5 LDAS. Surv. Geophys., 35, 577–606, doi:10.1007/s10712-013-9220-8.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. B., C. A. Clayson, F. R. Robertson, and D. L. Jackson, 2010: Predicting near-surface atmospheric variables from special sensor microwave/imager using neural networks with a first-guess approach. J. Geophys. Res., 115, D19113, doi:10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, doi:10.1175/2011JCLI4227.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosen, R. D., and A. S. Omolayo, 1981: Exchange of water vapor between land and ocean in the Northern Hemisphere. J. Geophys. Res., 86, 12 14712 152, doi:10.1029/JC086iC12p12147.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338, doi:10.1175/JCLI4057.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol.,115, 15–40, doi:10.1007/s00704-013-0860-x.

  • Sheffield, J., and E. F. Wood, 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., C. R. Ferguson, T. J. Troy, E. F. Wood, and M. F. McCabe, 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., and Coauthors, 2009: A Note on reviving the Goddard satellite-based surface turbulent fluxes (GSSTF). Dataset. Adv. Atmos. Sci., 26, 10711080, doi:10.1007/s00376-009-8138-z.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., K. Hilburn, L. S. Chiu, R. Adler, I.-I. Lin, E. Nelkin, J. Ardizzone, and S. Gao, 2012: Goddard satellite-based surface turbulent fluxes, daily grid F15, version 3. Goddard Earth Science Data and Information Services data, doi:10.5067/MEASURES/GSSTF/DATA306.

  • Syed, T. H., J. S. Famiglietti, D. P. Chambers, J. K. Willis, and K. Hilburn, 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 107, 17 91617 921, doi:10.1073/pnas.1003292107.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere ocean variation in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231, doi:10.1007/s003820050219.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Vermote, E. F., and N. Z. Saleous, 2006: Operational atmospheric correction of MODIS visible to middle infrared land surface data in the case of an infinite Lambertian target.Science and Instruments, Vol. 1, J. J. Qu et al., Eds., Earth Science Satellite Remote Sensing, Springer and Tsinghua University Press, 123153, doi:10.1007/978-3-540-37293-6_8.

  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2013: SSM/I version-7 calibration report. Remote Sensing Systems Rep. 011012, 46 pp. [Available online at http://images.remss.com/papers/rsstech/.]

  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, doi:10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., B. M. Fekete, C. J. Vörösmarty, and A. H. Schumann, 2010: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124, doi:10.5194/hess-14-1-2010.

    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. H. Kahn, B. Tian, B. Lambrigtsen, and H.-C. Ye, 2011: Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF evaporation. J. Climate, 24, 63076321, doi:10.1175/2011JCLI4154.1.

    • Search Google Scholar
    • Export Citation
  • Yao, Y. J., S. L. Liang, Q. Qin, K. C. Wang, S. M. Liu, and S. H. Zhao, 2012: Satellite detection of increases in global land surface evapotranspiration during 1984–2007. Int. J. Digital Earth,5, 299–318, doi:10.1080/17538947.2011.598953, 2012. 773.

  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390, doi:10.1175/2007JCLI1714.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate,10, 1004–1020, doi:10.1175/1520-442(1997)010<1004:ELIV>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 638 220 14
PDF Downloads 281 81 7