The Role of Extratropical Cyclones and Fronts for Southern Ocean Freshwater Fluxes

Lukas Papritz Institute for Atmospheric and Climate Science, and Center for Climate Systems Modeling, ETH Zürich, Zürich, Switzerland

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
,
Stephan Pfahl Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Stephan Pfahl in
Current site
Google Scholar
PubMed
Close
,
Irina Rudeva School of Earth Sciences, University of Melbourne, Melbourne, Australia

Search for other papers by Irina Rudeva in
Current site
Google Scholar
PubMed
Close
,
Ian Simmonds School of Earth Sciences, University of Melbourne, Melbourne, Australia

Search for other papers by Ian Simmonds in
Current site
Google Scholar
PubMed
Close
,
Harald Sodemann Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Harald Sodemann in
Current site
Google Scholar
PubMed
Close
, and
Heini Wernli Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Heini Wernli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the important role of extratropical cyclones and fronts for the atmospheric freshwater flux over the Southern Ocean is analyzed. Based on the Interim ECMWF Re-Analysis (ERA-Interim), the freshwater flux associated with cyclones is quantified and it is revealed that the structure of the Southern Hemispheric storm track is strongly imprinted on the climatological freshwater flux. In particular, during austral winter the spiraliform shape of the storm track leads to a band of negative freshwater flux bending toward and around Antarctica, complemented by a strong freshwater input into the midlatitude Pacific, associated with the split storm track. The interannual variability of the wintertime high-latitude freshwater flux is shown to be largely determined by the variability of strong precipitation (>75th percentile). Using a novel and comprehensive method to attribute strong precipitation uniquely to cyclones and fronts, it is demonstrated that over the Southern Ocean between 60% and 90% of the strong precipitation events are due to these synoptic systems. Cyclones are the dominant cause of strong precipitation around Antarctica and in the midlatitudes of the Atlantic and the Pacific, while in the south Indian Ocean and the eastern Atlantic fronts bring most of the strong precipitation. A detailed analysis of the spatial variations of intense front and cyclone precipitation associated with the interannual variability of the wintertime frequency of cyclones in the midlatitude and high-latitude branches of the Pacific storm track underpins the importance of considering both fronts and cyclones in the analysis of the interannual variability of freshwater fluxes.

Corresponding author address: Lukas Papritz, Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland. E-mail: lukas.papritz@env.ethz.ch

Abstract

In this study, the important role of extratropical cyclones and fronts for the atmospheric freshwater flux over the Southern Ocean is analyzed. Based on the Interim ECMWF Re-Analysis (ERA-Interim), the freshwater flux associated with cyclones is quantified and it is revealed that the structure of the Southern Hemispheric storm track is strongly imprinted on the climatological freshwater flux. In particular, during austral winter the spiraliform shape of the storm track leads to a band of negative freshwater flux bending toward and around Antarctica, complemented by a strong freshwater input into the midlatitude Pacific, associated with the split storm track. The interannual variability of the wintertime high-latitude freshwater flux is shown to be largely determined by the variability of strong precipitation (>75th percentile). Using a novel and comprehensive method to attribute strong precipitation uniquely to cyclones and fronts, it is demonstrated that over the Southern Ocean between 60% and 90% of the strong precipitation events are due to these synoptic systems. Cyclones are the dominant cause of strong precipitation around Antarctica and in the midlatitudes of the Atlantic and the Pacific, while in the south Indian Ocean and the eastern Atlantic fronts bring most of the strong precipitation. A detailed analysis of the spatial variations of intense front and cyclone precipitation associated with the interannual variability of the wintertime frequency of cyclones in the midlatitude and high-latitude branches of the Pacific storm track underpins the importance of considering both fronts and cyclones in the analysis of the interannual variability of freshwater fluxes.

Corresponding author address: Lukas Papritz, Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland. E-mail: lukas.papritz@env.ethz.ch
Save
  • Bals-Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 41914215, doi:10.1175/1520-0442(2001)014<4191:TWSHSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff.Elsevier Scientific, 379 pp.

  • Berbery, E. H., and V. R. Barros, 2002: The hydrological cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, doi:10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett.,38, L04809, doi:10.1029/2010GL046451.

  • Bosilovich, M., F. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T., and E. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202208, doi:10.1111/j.1600-0870.2009.00431.x.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, doi:10.1175/2011JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res., 118, 10 791–10 801, doi:10.1002/jgrd.50852.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett.,39, L10805, doi:10.1029/2012GL051736.

  • Cerovečki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, doi:10.1175/2011JCLI3858.1.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr., 43, 14851511, doi:10.1175/JPO-D-12-0121.1.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2006: Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134, 15181533, doi:10.1175/MWR3136.1.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745756, doi:10.1007/s003820050195.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett.,39, L24809, doi:10.1029/2012GL053866.

  • Ho, M., A. S. Kiem, and D. C. Verdon-Kidd, 2012: The southern annular mode: A comparison of indices. Hydrol. Earth Syst. Sci., 16, 967982, doi:10.5194/hess-16-967-2012.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Irving, D., I. Simmonds, and K. Keay, 2010: Mesoscale cyclone activity over the ice-free Southern Ocean: 1999–2008. J. Climate, 23, 54045420, doi:10.1175/2010JCLI3628.1.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., and M. Visbeck, 2011: On the linkage between Antarctic surface water stratification and global deep-water temperature. J. Climate, 24, 35453557, doi:10.1175/2011JCLI3642.1.

    • Search Google Scholar
    • Export Citation
  • Koch, P., H. Wernli, and H. C. Davies, 2006: An event-based jetstream climatology and typology. Int. J. Climatol., 26, 283301, doi:10.1002/joc.1255.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J. L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dyn., 28, 215230, doi:10.1007/s00382-006-0177-x.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, doi:10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z. X., and H. Le Treut, 1999: Transient behavior of the meridional moisture transport across South America and its relation to atmospheric circulation patterns. Geophys. Res. Lett., 26, 14091412, doi:10.1029/1999GL900274.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N., and T. Ito, 2009: The future evolution of the Southern Ocean CO2 sink. J. Mar. Res., 67, 597617, doi:10.1357/002224009791218832.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marsland, S., and J. Wolff, 2001: On the sensitivity of Southern Ocean sea ice to the surface freshwater flux: A model study. J. Geophys. Res., 106, 27232741, doi:10.1029/2000JC900086.

    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121, doi:10.1002/joc.1370.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Precipitation changes in high southern latitudes from global reanalyses: A cautionary tale. Surv. Geophys., 32, 475494, doi:10.1007/s10712-011-9114-6.

    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 2002: Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J. Geophys. Res., 107, 4742, doi:10.1029/2002JD002262.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., J. E. Hare, C. W. Fairall, and W. D. Otto, 2005: Air–sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131, 877912, doi:10.1256/qj.03.181.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., H. A. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, southern annular mode and ENSO. Climate Dyn., 38, 5773, doi:10.1007/s00382-011-1044-y.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, doi:10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, doi:10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., R. W. Schmitt, and L. L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G., and C. Vera, 2009: Nonstationary impacts of the southern annular mode on Southern Hemisphere climate. J. Climate, 22, 61426148, doi:10.1175/2009JCLI3036.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2003: Modes of atmospheric variability over the Southern Ocean. J. Geophys. Res., 108, 8078, doi:10.1029/2000JC000542.

  • Simmonds, I., and M. Dix, 1989: The use of mean atmospheric parameters in the calculation of modeled mean surface heat fluxes over the world’s oceans. J. Phys. Oceanogr., 19, 205215, doi:10.1175/1520-0485(1989)019<0205:TUOMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and J. C. King, 2004: Global and hemispheric climate variations affecting the Southern Ocean. Antarct. Sci., 16, 401413, doi:10.1017/S0954102004002226.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and E. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272288, doi:10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., A. Rafter, T. Cowan, A. Watkins, and K. Keay, 2005: Large-scale vertical momentum, kinetic energy and moisture fluxes in the Antarctic sea-ice region. Bound.-Layer Meteor., 117, 149177, doi:10.1007/s10546-004-5939-6.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, doi:10.1175/JCLI-D-11-00100.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2009: Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Res. Lett.,36, L22803, doi:10.1029/2009GL040242.

  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, doi:10.1016/j.pocean.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Tietäväinen, H., and T. Vihma, 2008: Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis. Int. J. Climatol., 28, 19771995, doi:10.1002/joc.1684.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231, doi:10.1007/s003820050219.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., and A. H. Lynch, 2013: Atmospheric meridional moisture flux over the Southern Ocean: A story of the Amundsen Sea. J. Climate, 26, 80558064, doi:10.1175/JCLI-D-12-00381.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, doi:10.1002/joc.965.

  • Turner, J., T. Lachlan-Cope, J. Thomas, and S. Colwell, 1995: The synoptic origins of precipitation over the Antarctic Peninsula. Antarct. Sci., 7, 327337, doi:10.1017/S0954102095000447.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, A. B. Pezza, I. Simmonds, K. Keay, and A. H. Lynch, 2011: Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res.,116, D07109, doi:10.1029/2010JD015358.

  • Uotila, P., T. Vihma, and M. Tsukernik, 2013: Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett., 40, 32373241, doi:10.1002/grl.50560.

    • Search Google Scholar
    • Export Citation
  • Vincent, D., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970, doi:10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res.,116, C10025, doi:10.1029/2010JC006937.

  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: Synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, doi:10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., J. Patoux, and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res.,114, D04106, doi:10.1029/2008JD010874.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1190 207 19
PDF Downloads 801 144 10