How Much Have Variations in the Meridional Overturning Circulation Contributed to Sea Surface Temperature Trends since 1850? A Study with the EC-Earth Global Climate Model

Torben Schmith Danish Meteorological Institute, Copenhagen, Denmark

Search for other papers by Torben Schmith in
Current site
Google Scholar
PubMed
Close
,
Shuting Yang Danish Meteorological Institute, Copenhagen, Denmark

Search for other papers by Shuting Yang in
Current site
Google Scholar
PubMed
Close
,
Emily Gleeson Met Éireann, Glasnevin, Dublin, Ireland

Search for other papers by Emily Gleeson in
Current site
Google Scholar
PubMed
Close
, and
Tido Semmler Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Helmholtz, Bremerhaven, Germany

Search for other papers by Tido Semmler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface of the world’s oceans has been warming since the beginning of industrialization. In addition to this, multidecadal sea surface temperature (SST) variations of internal origin exist. Evidence suggests that the North Atlantic Ocean exhibits the strongest multidecadal SST variations and that these variations are connected to the overturning circulation.

This work investigates the extent to which these internal multidecadal variations have contributed to enhancing or diminishing the trend induced by the external radiative forcing, globally and in the North Atlantic. A model study is carried out wherein the analyses of a long control simulation with constant radiative forcing at preindustrial level and of an ensemble of simulations with historical forcing from 1850 until 2005 are combined. First, it is noted that global SST trends calculated from the different historical simulations are similar, while there is a large disagreement between the North Atlantic SST trends. Then the control simulation is analyzed, where a relationship between SST anomalies and anomalies in the Atlantic meridional overturning circulation (AMOC) for multidecadal and longer time scales is identified. This relationship enables the extraction of the AMOC-related SST variability from each individual member of the ensemble of historical simulations and then the calculation of the SST trends with the AMOC-related variability excluded. For the global SST trends this causes only a little difference while SST trends with AMOC-related variability excluded for the North Atlantic show closer agreement than with the AMOC-related variability included. From this it is concluded that AMOC variability has contributed significantly to North Atlantic SST trends since the mid nineteenth century.

Corresponding author address: Torben Schmith, Danish Meteorological Institute, Lyngbyvej 100, Copenhagen 2100, Denmark. E-mail: ts@dmi.dk

Abstract

The surface of the world’s oceans has been warming since the beginning of industrialization. In addition to this, multidecadal sea surface temperature (SST) variations of internal origin exist. Evidence suggests that the North Atlantic Ocean exhibits the strongest multidecadal SST variations and that these variations are connected to the overturning circulation.

This work investigates the extent to which these internal multidecadal variations have contributed to enhancing or diminishing the trend induced by the external radiative forcing, globally and in the North Atlantic. A model study is carried out wherein the analyses of a long control simulation with constant radiative forcing at preindustrial level and of an ensemble of simulations with historical forcing from 1850 until 2005 are combined. First, it is noted that global SST trends calculated from the different historical simulations are similar, while there is a large disagreement between the North Atlantic SST trends. Then the control simulation is analyzed, where a relationship between SST anomalies and anomalies in the Atlantic meridional overturning circulation (AMOC) for multidecadal and longer time scales is identified. This relationship enables the extraction of the AMOC-related SST variability from each individual member of the ensemble of historical simulations and then the calculation of the SST trends with the AMOC-related variability excluded. For the global SST trends this causes only a little difference while SST trends with AMOC-related variability excluded for the North Atlantic show closer agreement than with the AMOC-related variability included. From this it is concluded that AMOC variability has contributed significantly to North Atlantic SST trends since the mid nineteenth century.

Corresponding author address: Torben Schmith, Danish Meteorological Institute, Lyngbyvej 100, Copenhagen 2100, Denmark. E-mail: ts@dmi.dk
Save
  • Andronova, N. G., and M. E. Schlesinger, 2000: Causes of global temperature changes during the 19th and 20th centuries. Geophys. Res. Lett., 27, 21372140, doi:10.1029/2000GL006109.

    • Search Google Scholar
    • Export Citation
  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, Dublin Philos. Mag. J. Sci.,41 (5th series), 237–275.

  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A. K. Betts, and K. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. W. Dixon, T. L. Delworth, T. R. Knutson, R. J. Stouffer, and F. Zeng, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, doi:10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., R. Bleck, and C. Rooth, 2004: Multi-decadal thermohaline variability in an ocean–atmosphere general circulation model. Climate Dyn., 22, 573590, doi:10.1007/s00382-004-0400-6.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. Obrien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective analyses, data statistics, and figures—CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 14811495, doi:10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and T. R. Knutson, 2000: Simulation of early 20th century global warming. Science, 287, 22462250, doi:10.1126/science.287.5461.2246.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–89. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363, doi:10.1175/2010BAMS2877.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2012: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031, doi:10.1175/JCLI3462.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, doi:10.1126/science.288.5473.1984.

  • Knight, J. R., 2009: The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J. Climate, 22, 16101625, doi:10.1175/2008JCLI2628.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 16241651, doi:10.1175/JCLI3709.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., and C. Spannagle, 2008: Multidecadal climate variability in observed and simulated surface temperatures. J. Climate, 21, 11041121, doi:10.1175/2007JCLI1874.1.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modélisation de l'lnstitut Pierre-Simon Laplace 27, 217 pp.

  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Munoz, E., B. Kirtman, and W. Weijer, 2011: Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep-Sea Res. II, 58, 18481857, doi:10.1016/j.dsr2.2010.10.064.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., U. S. Bhatt, H. L. Simmons, D. Walsh, J. E. Walsh, and X. Zhang, 2005: Multidecadal variability of North Atlantic temperature and salinity during the twentieth century. J. Climate, 18, 45624581, doi:10.1175/JCLI3548.1.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramakutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and Coauthors, 2012: A look at the ocean in the EC-Earth climate model. Climate Dyn., 39, 26312657, doi:10.1007/s00382-011-1239-2.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., G. S. Jones, J. A. Lowe, P. Thorne, C. Durman, T. C. Johns, and J. C. Thelen, 2006: Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. J. Climate, 19, 27632782, doi:10.1175/JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., G. Sugihara, and A. A. Tsonis, 2009: Long-term natural variability and 20th century climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12016 123, doi:10.1073/pnas.0908699106.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., Ed., 2006: OASIS3 user guide. PRISM Tech. Rep 3, 64 pp. [Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf.]

  • Vellinga, M., and P. Wu, 2004: Low-latitude fresh water influence on centennial variability of the thermohaline circulation. J. Climate, 17, 44984511, doi:10.1175/3219.1.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., D. Drijfhout, and W. Hazeleger, 2012: Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH. Climate Dyn., 39, 26952712, doi:10.1007/s00382-012-1366-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, doi:10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 252 38
PDF Downloads 155 51 9