The Value of High-Resolution Met Office Regional Climate Models in the Simulation of Multihourly Precipitation Extremes

Steven C. Chan School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Steven C. Chan in
Current site
Google Scholar
PubMed
Close
,
Elizabeth J. Kendon Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Elizabeth J. Kendon in
Current site
Google Scholar
PubMed
Close
,
Hayley J. Fowler School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Hayley J. Fowler in
Current site
Google Scholar
PubMed
Close
,
Stephen Blenkinsop School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Stephen Blenkinsop in
Current site
Google Scholar
PubMed
Close
,
Nigel M. Roberts Met Office Reading, Reading, United Kingdom

Search for other papers by Nigel M. Roberts in
Current site
Google Scholar
PubMed
Close
, and
Christopher A. T. Ferro College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Christopher A. T. Ferro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and 1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales, the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-km RCM, yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi)hourly JJA very extreme events. As accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are generally weaker than in JJA at daily or shorter time scales. Case studies indicate that “gridpoint storms” are one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the realism of 12-km RCM JJA extremes, including short-return-period events, which have return values closer to observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km RCM in the simulation of JJA extremes.

Denotes Open Access content.

Visiting scientist at the Met Office Hadley Centre, Exeter, United Kingdom.

Corresponding author address: Steven Chan, Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom. E-mail: steven.chan@metoffice.gov.uk

Abstract

Extreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and 1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales, the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-km RCM, yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi)hourly JJA very extreme events. As accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are generally weaker than in JJA at daily or shorter time scales. Case studies indicate that “gridpoint storms” are one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the realism of 12-km RCM JJA extremes, including short-return-period events, which have return values closer to observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km RCM in the simulation of JJA extremes.

Denotes Open Access content.

Visiting scientist at the Met Office Hadley Centre, Exeter, United Kingdom.

Corresponding author address: Steven Chan, Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom. E-mail: steven.chan@metoffice.gov.uk
Save
  • Acero, F. J., J. A. García, and M. C. Gallego, 2011: Peaks-over-threshold study of trends in extreme rainfall over the Iberian Peninsula. J. Climate, 24, 10891105, doi:10.1175/2010JCLI3627.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., and D. A. Darling, 1952: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat., 23, 193212, doi:10.1214/aoms/1177729437.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atyeo, J., and D. Walshaw, 2012: A region-based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend. Environmetrics, 23, 509521, doi:10.1002/env.2155.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and S. Lakshmivarahan, 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844862, doi:10.1175/MWR2892.1.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., J. Methven, and N. Roberts, 2008: Large-scale context for the UK floods in summer 2007. Weather, 63, 280288, doi:10.1002/wea.322.

    • Search Google Scholar
    • Export Citation
  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433443, doi:10.1127/0941-2948/2008/0316.

    • Search Google Scholar
    • Export Citation
  • Burt, S., 2005: Cloudburst upon Hendraburnick Down: The Boscastle storm of 16 August 2004. Weather, 60, 219227, doi:10.1256/wea.26.05.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, C. A. T. Ferro, and D. B. Stephenson, 2013: Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Climate Dyn., 41, 14751495, doi:10.1007/s00382-012-1568-9.

    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., C. A. T. Ferro, D. B. Stephenson, and D. J. Steinskog, 2008: Methods for exploring spatial and temporal variability of extreme events in climate data. J. Climate, 21, 20722092, doi:10.1175/2007JCLI1781.1.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208 pp.

  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Michele, C., N. T. Kottegoda, and R. Rosso, 2001: The derivation of areal reduction factor of storm rainfall from its scaling properties. Water Resour. Res., 37, 3247–3252, doi:10.1029/2001WR000346.

    • Search Google Scholar
    • Export Citation
  • Faulkner, D., 1999: Rainfall Frequency Estimation. Vol. 2, Flood Estimation Handbook, NERC Centre for Ecology and Hydrology, 110 pp.

  • Ferro, C. A. T., and J. Segers, 2003: Inference for clusters of extreme values. J. Roy. Stat. Soc., 65, 545556, doi:10.1111/1467-9868.00401.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and C. G. Kilsby, 2003a: Implications of changes in seasonal and annual extreme rainfall. Geophys. Res. Lett., 30, 1720, doi:10.1029/2003GL017327.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and C. G. Kilsby, 2003b: A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int. J. Climatol., 23, 13131334, doi:10.1002/joc.943.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and M. Ekström, 2009: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol., 29, 385416, doi:10.1002/joc.1827.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., D. Cooley, S. R. Sain, and M. Thurston, 2010: Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment. Extremes, 13, 241267, doi:10.1007/s10687-010-0101-y.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brozkova, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteor. Appl., 5, 116, doi:10.1017/S1350482798000577.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., P. Clark, and B. May, 2005: The Boscastle flood: Meteorological analysis of the conditions leading to flooding on 16 August 2004. Weather, 60, 230235, doi:10.1256/wea.71.05.

    • Search Google Scholar
    • Export Citation
  • Gregersen, I. B., H. J. D. Sorup, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen, 2013: Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Climatic Change, 118, 783797, doi:10.1007/s10584-012-0669-0.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanel, M., and T. A. Buishand, 2010: On the value of hourly precipitation extremes in regional climate model simulations. J. Hydrol., 393, 265273, doi:10.1016/j.jhydrol.2010.08.024.

    • Search Google Scholar
    • Export Citation
  • Hanel, M., T. A. Buishand, and C. A. T. Ferro, 2009: A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J. Geophys. Res., 114, D15107, doi:10.1029/2009JD011712.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2014: Mixing length controls on high resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2356, in press.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., S. J. Driscoll, and M. Kitchen, 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl., 7, 135144, doi:10.1017/S1350482700001468.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and D. J. Griggs, 2004: ENSEMBLES-based predictions of climate changes and their impacts. Eos, Trans. Amer. Geophys. Union, 85, 566, doi:10.1029/2004EO520005.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulations at cloud-resolving scales. Meteor. Z., 17, 383394, doi:10.1127/0941-2948/2008/0303.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52, 105124.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., and J. R. Wallis, 1993: Some statistics useful in regional frequency analysis. Water Resour. Res., 29, 271281, doi:10.1029/92WR01980.

    • Search Google Scholar
    • Export Citation
  • Jones, M. R., H. J. Fowler, C. G. Kilsby, and S. Blenkinsop, 2013: An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 and 2009. Int. J. Climatol., 33, 1178–1194, doi:10.1002/joc.3503.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high resolution regional climate model. J. Climate, 25, 57915806, doi:10.1175/JCLI-D-11-00562.1.

    • Search Google Scholar
    • Export Citation
  • Kjeldsen, T. R., 2007: The revitalised FSR/FEH rainfall-runoff method. Flood Estimation Handbook Supplementary Rep., Vol. 1, NERC Centre for Ecology and Hydrology, 68 pp.

  • Kjellström, E., F. Boberg, M. Castro, J. H. Christensen, G. Nikulin, and E. Sánchez, 2010: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res., 44, 135150, doi:10.3354/cr00932.

    • Search Google Scholar
    • Export Citation
  • Laio, F., 2004: Cramer–von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resour. Res., 40, W09308, doi:10.1029/2004WR003204.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Lilliefors, H. W., 1967: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62, 399402, doi:10.1080/01621459.1967.10482916.

    • Search Google Scholar
    • Export Citation
  • Madsen, H., P. F. Rasmussen, and D. Rosbjerg, 1997: Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour. Res., 33, 747757, doi:10.1029/96WR03848.

    • Search Google Scholar
    • Export Citation
  • Madsen, H., K. Arnbjerg-Nielsen, and P. S. Mikkelsen, 2009: Update of regional intensity–duration–frequency curves in Denmark: Tendency towards increased storm intensities. Atmos. Res., 92, 343349, doi:10.1016/j.atmosres.2009.01.013.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. W. Rust, and T. J. Osborn, 2009: The annual cycle of heavy precipitation across the United Kingdom: A model based on extreme value statistics. Int. J. Climatol., 29, 17311744, doi:10.1002/joc.1811.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., T. J. Osborn, and H. W. Rust, 2011: The influence of synoptic airflow on UK daily precipitation extremes. Part I: Observed spatio-temporal relationships. Climate Dyn., 36, 261275, doi:10.1007/s00382-009-0710-9.

    • Search Google Scholar
    • Export Citation
  • Martins, E. S., and J. R. Stedinger, 2000: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res., 36, 737744, doi:10.1029/1999WR900330.

    • Search Google Scholar
    • Export Citation
  • Martins, E. S., and J. R. Stedinger, 2001: Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resour. Res., 37, 25512557, doi:10.1029/2001WR000367.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344, doi:10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molini, A., L. G. Lanza, and P. La Barbera, 2005: The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications. Hydrol. Processes, 19, 10731088, doi:10.1002/hyp.5646.

    • Search Google Scholar
    • Export Citation
  • NERC, cited2013: Changing water cycle. Natural Environment Research Council. [Available online at http://www.bgs.ac.uk/changingwatercycle/.]

  • Overeem, A., T. A. Buishand, and I. Holleman, 2009: Extreme rainfall analysis and estimation of depth–duration–frequency curves using weather radar. Water Resour. Res., 45, W10424, doi:10.1029/2009WR007869.

    • Search Google Scholar
    • Export Citation
  • Perry, M., and D. Hollis, 2005: The generation of monthly gridded datasets for a range of climatic variables over the UK. Int. J. Climatol., 25, 10411054, doi:10.1002/joc.1161.

    • Search Google Scholar
    • Export Citation
  • Perry, M., D. Hollis, and M. Elms, 2009: The generation of daily gridded datasets of temperature and rainfall for the UK. Met Office National Climate Information Centre Climate Memo. 24, 7 pp. [Available online at http://www.metoffice.gov.uk/climatechange/science/downloads/generation_of_daily_gridded_datasets.pdf.]

    • Search Google Scholar
    • Export Citation
  • Re, M., and V. R. Barros, 2009: Extreme rainfalls in se South America. Climatic Change, 96, 119136, doi:10.1007/s10584-009-9619-x.

  • Reed, D., 1999: Overview. Vol. I, Flood Estimation Handbook, NERC Centre for Ecology and Hydrology, 108 pp.

  • Ribatet, M. A., 2006: A user’s guide to the PoT package (version 1.4). University of Quebec, 31 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, M. A., 1977: Goodness of fit for the extreme value distribution. Biometrika, 64, 583588, doi:10.1093/biomet/64.3.583.

  • Sunter, M., 2012: UK hourly rainfall data. Met Office Integrated Data Archive System (MIDAS) data. [Available online at http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas.]

  • Sunyer, M. A., H. J. D. Sorup, O. B. Christensen, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen, 2013: On the importance of observational data properties when assessing regional climate model performance of extreme precipitation. Hydrol. Earth Syst. Sci., 10, 70037043, doi:10.5194/hessd-10-7003-2013.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and D. Jacob, 2009: Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J. Geophys. Res., 114, D12113, doi:10.1029/2008JD010652.

    • Search Google Scholar
    • Export Citation
  • Tsakraklides, G., and J. L. Evans, 2003: Global and regional diurnal variations of organized convection. J. Climate, 16, 15621572, doi:10.1175/1520-0442-16.10.1562.

    • Search Google Scholar
    • Export Citation
  • UKMO, cited2013: Met Office surface data users guide. [Available online at http://badc.nerc.ac.uk/data/ukmo-midas/ukmo_guide.html.]

  • Waller, L. A., D. Smith, J. E. Childs, and L. A. Real, 2003: Monte Carlo assessments of goodness-of-fit for ecological simulation models. Ecol. Modell., 164, 4963, doi:10.1016/S0304-3800(03)00011-5.

    • Search Google Scholar
    • Export Citation
  • Willems, P., 2000: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types. J. Hydrol., 233, 189205, doi:10.1016/S0022-1694(00)00233-X.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1365 603 282
PDF Downloads 571 190 17