Improved Representation of Marine Stratocumulus Cloud Shortwave Radiative Properties in the CMIP5 Climate Models

Anders Engström Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Anders Engström in
Current site
Google Scholar
PubMed
Close
,
Frida A.-M. Bender Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Frida A.-M. Bender in
Current site
Google Scholar
PubMed
Close
, and
Johannes Karlsson Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Johannes Karlsson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radiative properties of subtropical marine stratocumulus clouds are investigated in an ensemble of current-generation global climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). Using a previously documented method for determining regional mean cloud albedo, the authors find a closer agreement with observations in the CMIP5 models as compared to the previous generation of models (phase 3 of CMIP). The multimodel average indicates regional mean, monthly mean cloud albedos ranging from 0.32 to 0.5 among 26 models and five regions, to be compared with satellite observations that indicate a range from 0.32 to 0.39 for the same five regions. The intermodel spread in cloud fraction gives rise to a spread in albedo. Within models, there is a tendency for large cloud fraction to be related to low cloud albedo and vice versa, a relationship that dampens the intermodel variability in total albedo. The intramodel variability in albedo, for a given cloud fraction, is found to be up to twice as large in magnitude in models as in satellite observations. The reason for this larger variability in models is not settled, but possible contributing factors may be imperfect representation in the models of cloud type distribution or of sensitivity to meteorological variability or aerosols. Changes in aerosol loading are found to be the likely cause of an increase in cloud albedo over time. The radiative effect of such a scene brightening in marine stratocumulus cloud regions, from preindustrial times to present day, is estimated to be up to −1 W m−2 for the global ocean, but there are no observations to verify this number.

Corresponding author address: Anders Engström, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195. E-mail: anderse@misu.su.se

Abstract

The radiative properties of subtropical marine stratocumulus clouds are investigated in an ensemble of current-generation global climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). Using a previously documented method for determining regional mean cloud albedo, the authors find a closer agreement with observations in the CMIP5 models as compared to the previous generation of models (phase 3 of CMIP). The multimodel average indicates regional mean, monthly mean cloud albedos ranging from 0.32 to 0.5 among 26 models and five regions, to be compared with satellite observations that indicate a range from 0.32 to 0.39 for the same five regions. The intermodel spread in cloud fraction gives rise to a spread in albedo. Within models, there is a tendency for large cloud fraction to be related to low cloud albedo and vice versa, a relationship that dampens the intermodel variability in total albedo. The intramodel variability in albedo, for a given cloud fraction, is found to be up to twice as large in magnitude in models as in satellite observations. The reason for this larger variability in models is not settled, but possible contributing factors may be imperfect representation in the models of cloud type distribution or of sensitivity to meteorological variability or aerosols. Changes in aerosol loading are found to be the likely cause of an increase in cloud albedo over time. The radiative effect of such a scene brightening in marine stratocumulus cloud regions, from preindustrial times to present day, is estimated to be up to −1 W m−2 for the global ocean, but there are no observations to verify this number.

Corresponding author address: Anders Engström, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195. E-mail: anderse@misu.su.se
Save
  • Bender, F. A.-M., H. Rodhe, R. J. Charlson, A. M.-L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, doi:10.1111/j.1600-0870.2006.00181.x.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., R. J. Charlson, A. M. L. Ekman, and L. Leahy, 2011: Quantification of monthly mean regional scale albedo of marine stratiform clouds in satellite observations and GCMs. J. Appl. Meteor. Climatol., 50, 21392148, doi:10.1175/JAMC-D-11-049.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 507, 6771, doi:10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 1976: Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology. J. Atmos. Sci., 33, 18311843, doi:10.1175/1520-0469(1976)033<1831:CCAAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., 2014: Do sophisticated parameterizations of aerosol–cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J. Geophys. Res., 119, 817–832, doi:10.1002/2013JD020511.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. E. Hare, and J. B. Snider, 1990: An eight-month sample of marine stratocumulus cloud fraction, albedo, and integrated liquid water. J. Climate, 3, 847864, doi:10.1175/1520-0442(1990)003<0847:AEMSOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayasaka, T., M. Kuji, and M. Tanaka, 1994: Air truth validation of cloud albedo estimated from NOAA Advanced Very High Resolution Radiometer data. J. Geophys. Res., 99, 18 68518 694, doi:10.1029/94JD00964.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., P. A. Durkee, H. H. Jonsson, K. Nielsen, and D. S. Covert, 2004: Effects of aerosol and SST gradients on marine stratocumulus albedo. Geophys. Res. Lett., 31, L06113, doi:10.1029/2003GL018909.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788, doi:10.1007/s00382-007-0322-1.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Kirkevåg, A., and Coauthors, 2013: Aerosol–climate interactions in the Norwegian Earth System Model—NorESM1-M. Geosci. Model Dev., 6, 207244, doi:10.5194/gmd-6-207-2013.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311, doi:10.1175/BAMS-89-3-303.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, A. Chrastansky, S. J. Jeffrey, and J.-J. Lou, 2013: Projected effects of declining aerosols in RCP4.5: Unmasking global warming? Atmos. Chem. Phys., 13, 10 88310 905, doi:10.5194/acp-13-10883-2013.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and J.-L. Brenguier, 2009: Cloud-controlling factors: Low clouds. Clouds in the Perturbed Climate System, J. Heintzenberg and R. Charlson, Eds., MIT Press, 173–196.

  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 63 4
PDF Downloads 113 37 7