Analysis of the Nonlinearity of El Niño–Southern Oscillation Teleconnections

Claudia Frauen School of Mathematical Sciences, and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Claudia Frauen in
Current site
Google Scholar
PubMed
Close
,
Dietmar Dommenget School of Mathematical Sciences, and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Dietmar Dommenget in
Current site
Google Scholar
PubMed
Close
,
Nicholas Tyrrell School of Mathematical Sciences, and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Nicholas Tyrrell in
Current site
Google Scholar
PubMed
Close
,
Michael Rezny Met Office, Exeter, United Kingdom, and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael Rezny in
Current site
Google Scholar
PubMed
Close
, and
Scott Wales University of Melbourne, and ARC Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Scott Wales in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) has significant variations and nonlinearities in its pattern and strength. ENSO events vary in their position along the equator, with some located in the central Pacific (CP) and others in the east Pacific (EP). To study how these variations are reflected in global ENSO teleconnections, both observations and idealized atmospheric general circulation model (AGCM) simulations are analyzed. Clear nonlinearities exist in observed teleconnections of sea level pressure (SLP) and precipitation. However, it is difficult to distinguish if these are caused by the different signs, strengths, or spatial patterns of events (strong El Niño events mostly being EP events and strong La Niña events mostly being CP events) or by combinations of these. Therefore, sensitivity experiments are performed with an AGCM forced with idealized EP and CP ENSO sea surface temperature (SST) patterns with varying signs and strengths. The response is generally stronger for warm events than for cold events and the teleconnection patterns vary with changing SST anomaly patterns. EP events show stronger nonlinearities than CP events. The nonlinear responses to ENSO events can be explained as a combination of nonlinear responses to a linear ENSO (fixed pattern but varying signs and strengths) and a linear response to a nonlinear ENSO (varying patterns). Any observed event is a combination of these aspects. While in most tropical regions these add up, leading to stronger nonlinear responses than expected from the single components, in some regions they cancel each other, resulting in little overall nonlinearity. This leads to strong regional differences in ENSO teleconnections.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00757.s1.

Corresponding author address: Claudia Frauen, School of Mathematical Sciences, Monash University, Wellington Rd., Clayton VIC 3800, Australia. E-mail: claudia.frauen@monash.edu

Abstract

El Niño–Southern Oscillation (ENSO) has significant variations and nonlinearities in its pattern and strength. ENSO events vary in their position along the equator, with some located in the central Pacific (CP) and others in the east Pacific (EP). To study how these variations are reflected in global ENSO teleconnections, both observations and idealized atmospheric general circulation model (AGCM) simulations are analyzed. Clear nonlinearities exist in observed teleconnections of sea level pressure (SLP) and precipitation. However, it is difficult to distinguish if these are caused by the different signs, strengths, or spatial patterns of events (strong El Niño events mostly being EP events and strong La Niña events mostly being CP events) or by combinations of these. Therefore, sensitivity experiments are performed with an AGCM forced with idealized EP and CP ENSO sea surface temperature (SST) patterns with varying signs and strengths. The response is generally stronger for warm events than for cold events and the teleconnection patterns vary with changing SST anomaly patterns. EP events show stronger nonlinearities than CP events. The nonlinear responses to ENSO events can be explained as a combination of nonlinear responses to a linear ENSO (fixed pattern but varying signs and strengths) and a linear response to a nonlinear ENSO (varying patterns). Any observed event is a combination of these aspects. While in most tropical regions these add up, leading to stronger nonlinear responses than expected from the single components, in some regions they cancel each other, resulting in little overall nonlinearity. This leads to strong regional differences in ENSO teleconnections.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00757.s1.

Corresponding author address: Claudia Frauen, School of Mathematical Sciences, Monash University, Wellington Rd., Clayton VIC 3800, Australia. E-mail: claudia.frauen@monash.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.16 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. Dommenget, T. Martin, and S. Power, 2014: The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., doi:10.1007/s00382-014-2091-y, in press.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, doi:10.1029/1999GL900161.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and A. Sullivan, 2010: Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Climate, 23, 49444955, doi:10.1175/2010JCLI3501.1.

    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 26312644, doi:10.1007/s00382-011-1186-y.

    • Search Google Scholar
    • Export Citation
  • Chung, C., S. Power, J. Arblaster, H. Rashid, and G. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 1837–1856, doi:10.1007/s00382-013-1892-8.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888.

  • Dommenget, D., and M. Latif, 2002: Analysis of observed and simulated SST spectra in the midlatitudes. Climate Dyn., 19, 277288, doi:10.1007/s00382-002-0229-9.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, doi:10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, doi:10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, doi:10.1029/2010GL044444.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and D. Zanchettin, 2012: Central Pacific El Niño, the subtropical bridge, and Eurasian climate. J. Geophys. Res. Atmos., 117, D01102, doi:10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383398, doi:10.1007/s00382-011-1157-3.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T. Y. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 12771293, doi:10.1175/1520-0442(2001)014<1277:ROTNCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, W. Wang, B. Huang, and B. Huang, 2012: An analysis of warm pool and cold tongue El Niños: Air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 20172035, doi:10.1007/s00382-011-1224-9.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res.,107, 4372, doi:10.1029/2001JD000393.

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, doi:10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8, 952964, doi:10.1175/1520-0442(1995)008<0952:IOTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, doi:10.1175/2010JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, doi:10.1175/2008JCLI2334.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Philip, S., and G. J. van Oldenborgh, 2009: Significant atmospheric nonlinearities in the ENSO cycle. J. Climate, 22, 40144028, doi:10.1175/2009JCLI2716.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19, 47554771, doi:10.1175/JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541–545,doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,108, 4407, doi:10.1029/2002JD002670.

  • Smith, I., A. Moise, K. Inape, B. Murphy, R. Colman, S. Power, and C. Chung, 2013: ENSO-related rainfall changes over the New Guinea region. J. Geophys. Res. Atmos., 118, 10 66510 675, doi:10.1002/jgrd.50818.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22, 31673174, doi:10.1175/2008JCLI2589.1.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and G. A. Meehl, 1984: Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J. Geophys. Res., 89, 94759503, doi:10.1029/JD089iD06p09475.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and X. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP Climate Forecast System. J. Climate, 27, 44514472, doi:10.1175/JCLI-D-13-00471.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Reversed spatial asymmetries between El Niño and La Niña and their linkage to decadal ENSO modulation in CMIP3 models. J. Climate, 24, 54235434, doi:10.1175/JCLI-D-11-00024.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, doi:10.1175/JCLI-D-11-00576.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. J., F.-F. Jin, H.-L. Ren, J. Li, and J.-X. Zhao, 2012: Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535552, doi:10.2151/jmsj.2012-407.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 736 241 25
PDF Downloads 629 197 34