Synoptic-Scale Dual Structure of Precipitable Water along the Eastern Pacific ITCZ

Guanghua Chen Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Guanghua Chen in
Current site
Google Scholar
PubMed
Close
,
Yukari N. Takayabu Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
, and
Chie Yokoyama Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Chie Yokoyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using 10-yr high-resolution satellite and reanalysis data, the synoptic-scale dual structure of precipitable water (PW), in which the southern and northern bands straddled at the ITCZ produce zonally propagating meridional dipoles, is observed over the eastern Pacific (EP) during boreal summer and fall. Composites indicate that the PW dipole, concurrent with the dipole-like filtered divergence, has a shift to the west of the anomalously cyclonic circulation. The vertical structure of filtered meridional wind is characterized by a wavenumber-1 baroclinic mode, and the vertical motion has two peaks situated at 850 and 300 hPa, respectively. To the east of the PW dipole, the shallow convection is embedded within the deep convection, forming a multilevel structure of meridional wind on the ITCZ equatorward side. To the west of the PW dipole, the deep convection tends to be suppressed because of the invasion of midlevel dry air advected by northerly flows. The generation and propagation of the dual PW band can be attributed to the divergence and advection terms related to specific humidity and three-dimensional wind. By comparison, the PW anomalies over the western North Pacific, only exhibiting a single band, coincide with the centers of synoptic disturbances with a barotropic vertical structure. Because of the weakening of lower-level divergence, the vertical motion, and the horizontal gradient of PW, the synoptic-scale PW signal is reduced significantly. The typical cases and statistics confirm that the strong meridional dipoles and westward-propagating disturbances are closely associated with the distortion and breakdown of ITCZ over the EP.

Corresponding author address: Dr. Guanghua Chen, Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 2718, Beijing 100190, China. E-mail: cgh@mail.iap.ac.cn

Abstract

Using 10-yr high-resolution satellite and reanalysis data, the synoptic-scale dual structure of precipitable water (PW), in which the southern and northern bands straddled at the ITCZ produce zonally propagating meridional dipoles, is observed over the eastern Pacific (EP) during boreal summer and fall. Composites indicate that the PW dipole, concurrent with the dipole-like filtered divergence, has a shift to the west of the anomalously cyclonic circulation. The vertical structure of filtered meridional wind is characterized by a wavenumber-1 baroclinic mode, and the vertical motion has two peaks situated at 850 and 300 hPa, respectively. To the east of the PW dipole, the shallow convection is embedded within the deep convection, forming a multilevel structure of meridional wind on the ITCZ equatorward side. To the west of the PW dipole, the deep convection tends to be suppressed because of the invasion of midlevel dry air advected by northerly flows. The generation and propagation of the dual PW band can be attributed to the divergence and advection terms related to specific humidity and three-dimensional wind. By comparison, the PW anomalies over the western North Pacific, only exhibiting a single band, coincide with the centers of synoptic disturbances with a barotropic vertical structure. Because of the weakening of lower-level divergence, the vertical motion, and the horizontal gradient of PW, the synoptic-scale PW signal is reduced significantly. The typical cases and statistics confirm that the strong meridional dipoles and westward-propagating disturbances are closely associated with the distortion and breakdown of ITCZ over the EP.

Corresponding author address: Dr. Guanghua Chen, Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 2718, Beijing 100190, China. E-mail: cgh@mail.iap.ac.cn
Save
  • Back, L. E., and C. S. Bretherton, 2009a: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009b: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, doi:10.1175/2009JCLI2393.1.

    • Search Google Scholar
    • Export Citation
  • Cao, X., G. Chen, and W. Chen, 2013: Tropical cyclogenesis induced by ITCZ breakdown in association with synoptic wave train over the western North Pacific. Atmos. Sci. Lett., 14, 294300, doi:10.1002/asl2.452.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, doi:10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., 1970: Westward propagating cloud patterns in the tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27, 133138, doi:10.1175/1520-0469(1970)027<0133:WPCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, doi:10.1175/2008JCLI2221.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, doi:10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Feng, T., G.-H. Chen, R.-H. Huang, and X.-Y. Shen, 2014: Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. Int. J. Climatol., 34, 216227, doi:10.1002/joc.3680.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., 1993: Global Atmospheric Circulations: Observations and Theories. Oxford University Press, 430 pp.

  • Gu, G., and C. Zhang, 2001: A spectrum analysis of synoptic-scale disturbances in the ITCZ. J. Climate, 14, 27252739, doi:10.1175/1520-0442(2001)014<2725:ASAOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and C. Zhang, 2002: Westward-propagating synoptic-scale disturbances and the ITCZ. J. Atmos. Sci., 59, 10621075, doi:10.1175/1520-0469(2002)059<1062:WPSSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., and C.-C. Wang, 2008: Intertropical convergence zones during the active season in daily data. J. Atmos. Sci., 65, 24252436, doi:10.1175/2007JAS2518.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Molinari, J., and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128, 32963307, doi:10.1175/1520-0493(2000)128<3296:PASSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., Y. Nakagomi, Y. Suzuki, N. Hasegawa, and A. Kadokura, 1985: Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year. Part I: Global features of the disturbances. J. Meteor. Soc. Japan, 63, 119.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., C. Zhang, and S.-h. Chen, 2007: Dynamics of the shallow meridional circulation around intertropical convergence zones. J. Atmos. Sci., 64, 22622285, doi:10.1175/JAS3964.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., S. W. Powell, C. Zhang, and B. E. Mapes, 2010: Idealized simulations of the intertropical convergence zone and its multilevel flows. J. Atmos. Sci., 67, 40284053, doi:10.1175/2010JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Randel, D. L., T. J. Greenwald, T. H. Vonder Haar, G. L. Stephens, M. A. Ringerud, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77, 12331246, doi:10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, doi:10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, doi:10.1175/2007JAS2341.1.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2003: A further study of the tropical Western Hemisphere warm pool. J. Climate, 16, 14761493, doi:10.1175/1520-0442-16.10.1476.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2006: The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Wea. Rev., 134, 14051421, doi:10.1175/MWR3130.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012a: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012b: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., 69, 1734, doi:10.1175/JAS-D-11-034.1.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2012a: Relationships between rain characteristics and environment. Part I: TRMM precipitation features and the large-scale environment over the tropical Pacific. Mon. Wea. Rev., 140, 28312840, doi:10.1175/MWR-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2012b: Relationships between rain characteristics and environment. Part II: Atmospheric disturbances associated with shallow convection over the eastern tropical Pacific. Mon. Wea. Rev., 140, 28412859, doi:10.1175/MWR-D-11-00251.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, doi:10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 73 7
PDF Downloads 75 30 2