A Weibull Approach for Improving Climate Model Projections of Tropical Cyclone Wind-Speed Distributions

Mari R. Tye National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Mari R. Tye in
Current site
Google Scholar
PubMed
Close
,
David B. Stephenson Exeter Climate Systems, Department of Mathematics and Computer Science, University of Exeter, Exeter, United Kingdom

Search for other papers by David B. Stephenson in
Current site
Google Scholar
PubMed
Close
,
Greg J. Holland National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Greg J. Holland in
Current site
Google Scholar
PubMed
Close
, and
Richard W. Katz National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Richard W. Katz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reliable estimates of future changes in extreme weather phenomena, such as tropical cyclone maximum wind speeds, are critical for climate change impact assessments and the development of appropriate adaptation strategies. However, global and regional climate model outputs are often too coarse for direct use in these applications, with variables such as wind speed having truncated probability distributions compared to those of observations. This poses two problems: How can model-simulated variables best be adjusted to make them more realistic? And how can such adjustments be used to make more reliable predictions of future changes in their distribution?

This study investigates North Atlantic tropical cyclone maximum wind speeds from observations (1950–2010) and regional climate model simulations (1995–2005 and 2045–55 at 12- and 36-km spatial resolutions). The wind speed distributions in these datasets are well represented by the Weibull distribution, albeit with different scale and shape parameters.

A power-law transfer function is used to recalibrate the Weibull variables and obtain future projections of wind speeds. Two different strategies, bias correction and change factor, are tested by using 36-km model data to predict future 12-km model data (pseudo-observations). The strategies are also applied to the observations to obtain likely predictions of the future distributions of wind speeds. The strategies yield similar predictions of likely changes in the fraction of events within Saffir–Simpson categories—for example, an increase from 21% (1995–2005) to 27%–37% (2045–55) for category 3 or above events and an increase from 1.6% (1995–2005) to 2.8%–9.8% (2045–55) for category 5 events.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mari Tye (née Jones), National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: maritye@ucar.edu

Abstract

Reliable estimates of future changes in extreme weather phenomena, such as tropical cyclone maximum wind speeds, are critical for climate change impact assessments and the development of appropriate adaptation strategies. However, global and regional climate model outputs are often too coarse for direct use in these applications, with variables such as wind speed having truncated probability distributions compared to those of observations. This poses two problems: How can model-simulated variables best be adjusted to make them more realistic? And how can such adjustments be used to make more reliable predictions of future changes in their distribution?

This study investigates North Atlantic tropical cyclone maximum wind speeds from observations (1950–2010) and regional climate model simulations (1995–2005 and 2045–55 at 12- and 36-km spatial resolutions). The wind speed distributions in these datasets are well represented by the Weibull distribution, albeit with different scale and shape parameters.

A power-law transfer function is used to recalibrate the Weibull variables and obtain future projections of wind speeds. Two different strategies, bias correction and change factor, are tested by using 36-km model data to predict future 12-km model data (pseudo-observations). The strategies are also applied to the observations to obtain likely predictions of the future distributions of wind speeds. The strategies yield similar predictions of likely changes in the fraction of events within Saffir–Simpson categories—for example, an increase from 21% (1995–2005) to 27%–37% (2045–55) for category 3 or above events and an increase from 1.6% (1995–2005) to 2.8%–9.8% (2045–55) for category 5 events.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mari Tye (née Jones), National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: maritye@ucar.edu
Save
  • Batts, M. E., E. Simiu, and L. R. Russell, 1980: Hurricane wind speeds in the United States. J. Struct. Div., 106, 20012016.

  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science,327, 454–458, doi:10.1126/science.1180568.

  • Benton, T., B. Gallani, C. Jones, K. Lewis, and R. Tiffin, 2012: Severe weather and UK food chain resilience: Detailed appendix to synthesis report. U.K. Government Office for Science, 34 pp.

  • Brown, C., and R. L. Wilby, 2012: An alternate approach to assessing climate risks. Eos, Trans. Amer. Geophys. Union, 93 (41), 401–402, doi:10.1029/2012EO410001.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., T. Q. Murdock, T. Werner, S. R. Sobie, and J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, doi:10.1175/JCLI-D-11-00408.1.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Conradsen, K., L. B. Nielsen, and L. P. Prahm, 1984: Review of Weibull statistics for estimation of wind speed distributions. J. Climate Appl. Meteor., 23, 11731183, doi:10.1175/1520-0450(1984)023<1173:ROWSFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, C. L., D. van der Kamp, and A. H. Monahan, 2012: Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Climate Dyn., 38, 12811299, doi:10.1007/s00382-011-1173-3.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. J. Holland, C. L. Bruyère, L. R. Leung, and A. Suzuki-Parker, 2014: Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Climatic Change, doi:10.1007/s10584-013-0954-6, in press.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Executive Office of the President, 2013: The President’s Climate Action Plan. Washington D.C., 21 pp. [Available online at http://www.whitehouse.gov/sites/default/files/image/president27sclimateactionplan.pdf.]

  • Haas, R., J. G. Pinto, and K. Born, 2014: Can dynamically downscaled windstorm footprints be improved by observations through a probabilistic approach? J. Geophys. Res., 119, 713–725, doi:10.1002/2013JD020882.

    • Search Google Scholar
    • Export Citation
  • Heckert, N. A., E. Simiu, and T. Whalen, 1998: Estimates of hurricane wind speeds by “peaks over threshold” method. J. Struct. Eng.,124, 445–449, doi:10.1061/(ASCE)0733-9445(1998)124:4(445).

  • Ho, C. K., D. B. Stephenson, M. Collins, C. A. T. Ferro, and S. J. Brown, 2012: Calibration strategies: A source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc., 93, 2126, doi:10.1175/2011BAMS3110.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, doi:10.1175/2008MWR2395.1.

  • Holland, G., and C. L. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617–627, doi:10.1007/s00382-013-1713-0.

    • Search Google Scholar
    • Export Citation
  • Jagger, T., J. B. Elsner, and X. Niu, 2001: A dynamic probability model of hurricane winds in coastal counties of the United States. J. Appl. Meteor., 40, 853863, doi:10.1175/1520-0450(2001)040<0853:ADPMOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Justus, C. G., W. R. Hargraves, A. Mikhail, and D. Graber, 1978: Methods for estimating wind speed frequency distributions. J. Appl. Meteor., 17, 350353, doi:10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kallache, M., M. Vrac, P. Naveau, and P. Michelangeli, 2011: Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res., 116, D05113, doi:10.1029/2010JD014892.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., P. F. Craigmile, P. Guttorp, M. Haran, B. Sansó, and M. L. Stein, 2013: Uncertainty analysis in climate change assessments. Nat. Climate Change, 3 (9), 769771, doi:10.1038/nclimate1980.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, doi:10.1002/joc.3518.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2012a: Can we see the wind? Statistical downscaling of historical sea surface winds in the subarctic northeast Pacific. J. Climate, 25, 15111528, doi:10.1175/2011JCLI4089.1.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2012b: The temporal autocorrelation structure of sea surface winds. J. Climate, 25, 66846700, doi:10.1175/JCLI-D-11-00698.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., and Coauthors, 2009: Climate change projections. Met Office Hadley Centre Rep., 192 pp. [Available online at http://ukclimateprojections.metoffice.gov.uk/22565.]

  • Nakicenovic, N., and Coauthors, 2000: Summary for policymakers. Emissions Scenarios, N. Nakicenovic and R. Swart, Eds., 1–20.

  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/s00704-009-0134-9.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, doi:10.1029/2005JD005899.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2013: Assessing the vulnerability of wind energy to climate change and extreme events. Climatic Change, 121, 79–91, doi:10.1007/s10584-013-0889-y.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1 (1), 8296, doi:10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Salameh, T., P. Drobinski, M. Vrac, and P. Naveau, 2009: Statistical downscaling of near-surface wind over complex terrain in southern France. Meteor. Atmos. Phys., 103, 253265, doi:10.1007/s00703-008-0330-7.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1981: The Hurricane and Its Impact. Louisiana State University Press, 398 pp.

  • Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. Huang, and W. Wang, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Stewart, D. A., and O. M. Essenwanger, 1978: Frequency distribution of wind speed near the surface. J. Appl. Meteor., 17, 16331642, doi:10.1175/1520-0450(1978)017<1633:FDOWSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Suzuki-Parker, A., 2012: Uncertainties and Limitations in Simulating Tropical Cyclones. Springer, 78 pp.

  • Tuller, S. E., and A. C. Brett, 1985: The goodness of fit of the Weibull and Rayleigh distributions to the distributions of observed wind speeds in a topographically diverse area. J. Climatol., 5, 7994, doi:10.1002/joc.3370050107.

    • Search Google Scholar
    • Export Citation
  • van der Kamp, D., C. L. Curry, and A. H. Monahan, 2012: Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components. Climate Dyn., 38, 13011311, doi:10.1007/s00382-011-1175-1.

    • Search Google Scholar
    • Export Citation
  • Weibull, W., 1951: A statistical distribution function of wide applicability. J. Appl. Mech., 18, 293297.

  • Whetton, P., K. Hennessy, J. Clarke, K. McInnes, and D. Kent, 2012: Use of representative climate futures in impact and adaptation assessment. Climatic Change, 115, 433442, doi:10.1007/s10584-012-0471-z.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Zhou, Y., and S. J. Smith, 2013: Spatial and temporal patterns of global onshore wind speed distribution. Environ. Res. Lett., 8, 034029, doi:10.1088/1748-9326/8/3/034029.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 154 13
PDF Downloads 464 119 9