Characterizing Observed Midtopped Cloud Regimes Associated with Southern Ocean Shortwave Radiation Biases

Shannon Mason Monash Weather and Climate, Monash University, Melbourne, Victoria, Australia

Search for other papers by Shannon Mason in
Current site
Google Scholar
PubMed
Close
,
Christian Jakob Monash Weather and Climate, Monash University, Melbourne, Victoria, Australia

Search for other papers by Christian Jakob in
Current site
Google Scholar
PubMed
Close
,
Alain Protat Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
, and
Julien Delanoë Laboratoire Atmosphéres, Milieux, Observations Spatiales, UVSQ/IPSL/CNRS, Paris, France

Search for other papers by Julien Delanoë in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to midtopped clouds, and observations confirm significant midtopped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modeled clouds. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of midtopped clouds and their meteorological contexts.

This study presents a refined set of midtopped cloud subregimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The subgrid-scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the radar–lidar (DARDAR) cloud classification mask.

The midtopped cloud subregimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low clouds; optically thick clouds with frequent deep structures under weak ascent and warm midlevel anomalies; and a midlevel convective cloud regime associated with strong ascent and warm advection. The new midtopped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.

Corresponding author address: Shannon Mason, Monash Weather and Climate, Monash University, Melbourne VIC 3800, Australia. E-mail: shannon.mason@monash.edu

Abstract

Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to midtopped clouds, and observations confirm significant midtopped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modeled clouds. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of midtopped clouds and their meteorological contexts.

This study presents a refined set of midtopped cloud subregimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The subgrid-scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the radar–lidar (DARDAR) cloud classification mask.

The midtopped cloud subregimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low clouds; optically thick clouds with frequent deep structures under weak ascent and warm midlevel anomalies; and a midlevel convective cloud regime associated with strong ascent and warm advection. The new midtopped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.

Corresponding author address: Shannon Mason, Monash Weather and Climate, Monash University, Melbourne VIC 3800, Australia. E-mail: shannon.mason@monash.edu
Save
  • Anderberg, M., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, P. B. Krummel, and H. Gerber, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122, 13071339, doi:10.1002/qj.49712253405.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124, 151168, doi:10.1002/qj.49712454507.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, X. Liu, D. M. Frierson, and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res., 118, 51365146, doi:10.1002/jgrd.50461.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2012: What determines meridional heat transport in climate models? J. Climate, 25, 38323850, doi:10.1175/JCLI-D-11-00257.1.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, M., and S. Warren, 2007: The relative importance of clouds and sea ice for the solar energy budget of the Southern Ocean. J. Climate, 20, 941954, doi:10.1175/JCLI4040.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., and J. R. Norris, 2010: Cluster analysis of midlatitude oceanic cloud regimes: Mean properties and temperature sensitivity. Atmos. Chem. Phys., 10, 64356459, doi:10.5194/acp-10-6435-2010.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110, D15S17, doi:10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. R. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 50615080, doi:10.1175/2011JCLI4052.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, L. B. Hande, and J. M. Haynes, 2012a: The structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Climate, 25, 25352546, doi:10.1175/JCLI-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012b: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18, 12031215, doi:10.1175/JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res., 118, 8166–8184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2010: Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-Train. J. Geophys. Res.,115, D10201, doi:10.1029/2009JD012517.

  • Mace, G. G., and F. J. Wrenn, 2013: Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, doi:10.1175/JCLI-D-12-00207.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J. Climate, 24, 24052418, doi:10.1175/2010JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. B. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res.,116, D12202, doi:10.1029/2010JD015472.

  • Pincus, R., S. Platnick, G. S. Ackerman, R. J. P. Hofmann, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, doi:10.1175/JAMC-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett,32, L21812, doi:10.1029/2005GL024584.

  • Stephens, G., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Verlinden, K. L., D. W. J. Thompson, and G. L. Stephens, 2011: The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. J. Climate, 24, 57995811, doi:10.1175/2011JCLI3922.1.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., C. Senior, S. Bony, and J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, doi:10.1007/s003820100157.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250, doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, doi:10.1007/s00382-008-0443-1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II Experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett.,34, L19803, doi:10.1029/2007GL030135.

  • Zhang, M. H., 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1006 678 109
PDF Downloads 279 87 12