Decadal Evolution of Ocean Thermal Anomalies in the North Atlantic: The Effects of Ekman, Overturning, and Horizontal Transport

Richard G. Williams School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom

Search for other papers by Richard G. Williams in
Current site
Google Scholar
PubMed
Close
,
Vassil Roussenov School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom

Search for other papers by Vassil Roussenov in
Current site
Google Scholar
PubMed
Close
,
Doug Smith Hadley Centre, Exeter, United Kingdom

Search for other papers by Doug Smith in
Current site
Google Scholar
PubMed
Close
, and
M. Susan Lozier Duke University, Durham, North Carolina

Search for other papers by M. Susan Lozier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Basin-scale thermal anomalies in the North Atlantic, extending to depths of 1–2 km, are more pronounced than the background warming over the last 60 years. A dynamical analysis based on reanalyses of historical data from 1965 to 2000 suggests that these thermal anomalies are formed by ocean heat convergences, augmented by the poorly known air–sea fluxes. The heat convergence is separated into contributions from the horizontal circulation and the meridional overturning circulation (MOC), the latter further separated into Ekman and MOC transport minus Ekman transport (MOC-Ekman) cells. The subtropical thermal anomalies are mainly controlled by wind-induced changes in the Ekman heat convergence, while the subpolar thermal anomalies are controlled by the MOC-Ekman heat convergence; the horizontal heat convergence is generally weaker, only becoming significant within the subpolar gyre. These thermal anomalies often have an opposing sign between the subtropical and subpolar gyres, associated with opposing changes in the meridional volume transport driving the Ekman and MOC-Ekman heat convergences. These changes in gyre-scale convergences in heat transport are probably induced by the winds, as they correlate with the zonal wind stress at gyre boundaries.

Denotes Open Access content.

Corresponding author address: Richard G. Williams, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, United Kingdom. E-mail: ric@liv.ac.uk

Abstract

Basin-scale thermal anomalies in the North Atlantic, extending to depths of 1–2 km, are more pronounced than the background warming over the last 60 years. A dynamical analysis based on reanalyses of historical data from 1965 to 2000 suggests that these thermal anomalies are formed by ocean heat convergences, augmented by the poorly known air–sea fluxes. The heat convergence is separated into contributions from the horizontal circulation and the meridional overturning circulation (MOC), the latter further separated into Ekman and MOC transport minus Ekman transport (MOC-Ekman) cells. The subtropical thermal anomalies are mainly controlled by wind-induced changes in the Ekman heat convergence, while the subpolar thermal anomalies are controlled by the MOC-Ekman heat convergence; the horizontal heat convergence is generally weaker, only becoming significant within the subpolar gyre. These thermal anomalies often have an opposing sign between the subtropical and subpolar gyres, associated with opposing changes in the meridional volume transport driving the Ekman and MOC-Ekman heat convergences. These changes in gyre-scale convergences in heat transport are probably induced by the winds, as they correlate with the zonal wind stress at gyre boundaries.

Denotes Open Access content.

Corresponding author address: Richard G. Williams, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, United Kingdom. E-mail: ric@liv.ac.uk
Save
  • Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean, with application to upwelling. Deep-Sea Res., 22, 583596.

  • Barker, P. M., J. R. Dunn, C. M. Domingues, and S. E. Wijffels, 2011: Pressure sensor drifts in Argo and their impacts. J. Atmos. Oceanic Technol., 28, 10361049.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J.-M. Molines, and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett.,34, L23606, doi:10.1029/2007GL031731.

  • Boyer, T. P., and Coauthors, 2006: World Ocean Database 2005. NODC Atlas NESDIS 60, S. Levitus, Ed., U.S. Government Printing Office, 190 pp.

  • Bryden, H., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 455–474.

  • Collins, M., B. B. B. Booth, B. Bhaskaran, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2010: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn.,36, 1737–1766, doi:10.1007/s00382-010-0808-0.

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511.

    • Search Google Scholar
    • Export Citation
  • Domingues, C., J. A. Church, N. White, P. Gleckler, S. Wijffels, P. Barker, and J. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature,453, 1090–1093, doi:10.1038/nature07080.

  • Gill, A. E., and P. P. Niller, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res., 20, 141177.

  • Greatbatch, R. J., A. F. Fanning, and A. D. Goulding, 1991: A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res., 96, 22 00922 023.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. Rhines, and D. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659.

    • Search Google Scholar
    • Export Citation
  • Hall, M., and H. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29, 339359.

  • Hurrell, J., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles: Historical and real-time data. J. Mar. Syst., 65, 158175.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411.

  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the North Atlantic. Science, 317, 938941.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705.

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett.,36, L07608, doi:10.1029/2008GL037155.

  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett.,39, L10603, doi:10.1029/2012GL051106.

  • Lozier, M. S., S. Leadbetter, R. G. Williams, V. Roussenov, M. S. C. Reed, and N. J. Moore, 2008: The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science, 319, 800803.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., V. Roussenov, M. S. C. Reed, and R. G. Williams, 2010: Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosci., 3, 728734.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J. R., K. Giering, Q. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29 52929 547.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., C. R. Mechoso, and E. Keto, 1982: A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep-Sea Res., 29A, 11711192.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2012: Importance of circulation changes to Atlantic heat storage rates on seasonal to interannual time scales. J. Climate, 25, 350362.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2010: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2011: Deep-water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II, 58, 18191832.

    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and W. B. Owens, 2000: The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography, 13, 4550.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res.,112, C02022, doi:10.1029/2005JC003172.

  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 1–22.

  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1069 353 85
PDF Downloads 531 117 5