Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks

Pierre Friedlingstein * College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Pierre Friedlingstein in
Current site
Google Scholar
PubMed
Close
,
Malte Meinshausen Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, and School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Malte Meinshausen in
Current site
Google Scholar
PubMed
Close
,
Vivek K. Arora Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Vivek K. Arora in
Current site
Google Scholar
PubMed
Close
,
Chris D. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Chris D. Jones in
Current site
Google Scholar
PubMed
Close
,
Alessandro Anav * College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Alessandro Anav in
Current site
Google Scholar
PubMed
Close
,
Spencer K. Liddicoat Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Spencer K. Liddicoat in
Current site
Google Scholar
PubMed
Close
, and
Reto Knutti Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Reto Knutti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5 simulations. When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m−2) when driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these models already overestimate the present-day CO2, with the present-day biases reasonably well correlated with future atmospheric concentrations’ departure from the prescribed concentration. The uncertainty in CO2 projections is mainly attributable to uncertainties in the response of the land carbon cycle. As a result of simulated higher CO2 concentrations than in the concentration-driven simulations, temperature projections are generally higher when ESMs are driven with CO2 emissions. Global surface temperature change by 2100 (relative to present day) increased by 3.9° ± 0.9°C for the emission-driven simulations compared to 3.7° ± 0.7°C in the concentration-driven simulations. Although the lower ends are comparable in both sets of simulations, the highest climate projections are significantly warmer in the emission-driven simulations because of stronger carbon cycle feedbacks.

Corresponding author address: Pierre Friedlingstein, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom. E-mail: p.friedlingstein@exeter.ac.uk

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Abstract

In the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5 simulations. When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m−2) when driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these models already overestimate the present-day CO2, with the present-day biases reasonably well correlated with future atmospheric concentrations’ departure from the prescribed concentration. The uncertainty in CO2 projections is mainly attributable to uncertainties in the response of the land carbon cycle. As a result of simulated higher CO2 concentrations than in the concentration-driven simulations, temperature projections are generally higher when ESMs are driven with CO2 emissions. Global surface temperature change by 2100 (relative to present day) increased by 3.9° ± 0.9°C for the emission-driven simulations compared to 3.7° ± 0.7°C in the concentration-driven simulations. Although the lower ends are comparable in both sets of simulations, the highest climate projections are significantly warmer in the emission-driven simulations because of stronger carbon cycle feedbacks.

Corresponding author address: Pierre Friedlingstein, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom. E-mail: p.friedlingstein@exeter.ac.uk

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Save
  • Adachi, Y., and Coauthors, 2013: Basic performance of a new Earth System Model of the Meteorological Research Institute (MRI-ESM1). Pap. Meteor. Geophys., in press.

    • Search Google Scholar
    • Export Citation
  • Anav, A., and Coauthors, 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 68016843.

    • Search Google Scholar
    • Export Citation
  • Andres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden, 2011: Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus,63B, 309–327, doi:10.1111/j.1600-0889.2011.00530.x.

  • Arora, V. K., and G. J. Boer, 2010: Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biol., 16, 33273348.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J. Climate, 26, 52895314.

    • Search Google Scholar
    • Export Citation
  • Blyth, E., D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best, and S. Sitch, 2011: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geosci. Model Dev., 4, 255269.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., M. D. Hartman, W. J. Parton, and W. R. Wieder, 2013: Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Global Change Biol., 19, 957974, doi:10.1111/gcb.12031.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Cadule, P., P. Friedlingstein, L. Bopp, S. Sitch, C. D. Jones, P. Ciais, S. L. Piao, and P. Peylin, 2010: Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements. Global Biogeochem. Cycles, 24, GB2016, doi:10.1029/2009GB003556.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075.

  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, doi:10.1038/nature11882.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357373.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Coupling between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165.

    • Search Google Scholar
    • Export Citation
  • Dunne, J., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate,26, 2247–2267.

  • Forster, P. M. D., and K. E. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19, 61816194.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., I. Y. Fung, E. A. Holland, J. G. John, G. P. Brasseur, D. J. Erickson, and D. S. Schimel, 1995: On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem. Cycles, 9, 541556.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2010: Update on CO2 emissions. Nat. Geosci., 3, 811812.

  • Gillet, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250.

  • Hajima, T., T. Ise, K. Tachiiri, E. Kato, S. Watanabe, and M. Kawamiya, 2012: Climate change, allowable emission, and earth system response to representative concentration pathway scenarios. J. Meteor. Soc. Japan, 90, 417433.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107.

    • Search Google Scholar
    • Export Citation
  • Hibbard, K. A., G. A. Meehl, P. Cox, and P. Friedlingstein, 2007: A strategy for climate change stabilization experiments. Eos, Trans. Amer. Geophys. Union, 88, 217–221, doi:10.1029/2007EO200002.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Houghton, R. A., 2010: How well do we know the flux of CO2 from land-use change? Tellus,62B, 337–351, doi:10.1111/j.1600-0889.2010.00473.x.

  • Hurtt, G. C., S. Frolking, M. G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S. W. Pacala, and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol., 12, 1208–1229, doi:10.1111/j.1365-2486.2006.01150.x.

    • Search Google Scholar
    • Export Citation
  • Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. Li, and I. Núñez-Riboni, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth System Model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst., 5, 287–315, doi:10.1029/2012MS000178.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., P. M. Cox, and C. Huntingford, 2006: Climate-carbon cycle feedbacks under stabilization: Uncertainty and observational constraints. Tellus, 58B, 603613.

    • Search Google Scholar
    • Export Citation
  • Jones, C. J., and Coauthors, 2013: Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate,26, 4398–4413.

  • Joos, F., I. C. Prentice, S. Sitch, R. Meyer, G. Hooss, G.-K. Plattner, S. Gerber, and K. Hasselmann, 2001: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles, 15, 891907.

    • Search Google Scholar
    • Export Citation
  • Keppel-Aleks, G., and Coauthors, 2013: Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first centuries. J. Climate,26, 4447–4475.

  • Knutti, R., and J. Sedláček, 2012: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and Coauthors, 2008: A review of uncertainties in global temperature projections over the twenty‐first century. J. Climate, 21, 26512663.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, doi:10.1038/ngeo689.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2012: The global carbon budget 1959–2011. Earth Syst. Sci. Data Discuss., 5, 1107–1157.

  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., 2005: Decrease of emissions required to stabilize atmospheric CO2 due to positive carbon cycle–climate feedbacks. Geophys. Res. Lett., 32, L21707, doi:10.1029/2005GL023435.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., 2006: Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus, 58B, 591602.

  • McGuire, A. D., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15, 183206.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley, 2011a: Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys., 11, 14171456.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., T. M. L. Wigley, and S. C. B. Raper, 2011b: Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 2: Applications. Atmos. Chem. Phys., 11, 14571471.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011c: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756.

  • Nakicenovic, N., and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Orr, J. C., and Coauthors, 2001: Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem. Cycles, 15, 4360.

    • Search Google Scholar
    • Export Citation
  • Peters, G. P., G. Marland, C. Le Quéré, T. Boden, J. G. Canadell, and M. R. Raupach, 2012: Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Climate Change,2, 2–4, doi:10.1038/nclimate1332.

  • Prentice, I. C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 183–238.

  • Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biol., 15, 24622484, doi:10.1111/j.1365-2486.2009.01912.x.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305,367371.

  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle, future plant geography, and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 2015–2039, doi:10.1111/j.1365-2486.2008.01626.x.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Taylor J. A., and J. Lloyd, 1992: Sources and sinks of atmospheric CO2. Aust. J. Bot.,40, 407418.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Thompson, M. V., J. T. Randerson, C. M. Malmström, and C. B. Field, 1996: Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink? Global Biogeochem. Cycles, 10, 711726.

    • Search Google Scholar
    • Export Citation
  • Thornton, P., and Coauthors, 2009: Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 20992120, doi:10.5194/bg-6-2099-2009.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze, 2012: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. Discuss., 5, 30353087.

    • Search Google Scholar
    • Export Citation
  • Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon predictions from CMIP5 earth system models and comparison with observations. Biogeosciences, 10, 17171736, doi:10.5194/bg-10-1717-2013.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • VEMAP members, 1995: Vegetation/Ecosystem Modeling and Analysis Project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycles, 9, 407437.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Oceanic Phys., 46, 414431.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Search Google Scholar
    • Export Citation
  • Xin, X., L. Zhang, J. Zhang, T. Wu, and Y. Fang, 2013a: Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J. Meteor. Soc. Japan, 91, 413429.

    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., T.-W. Wu, J.-L. Li, Z.-Z. Wang, W.-P. Li, and F.-H. Wu, 2013b: How well does BCC_CSM1.1 reproduce the 20th century climate change over China? Atmos. Oceanic Sci. Lett., 6, 2126.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., P. Friedlingstein, and A. D. Friend, 2010: Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett., 37, L01401, doi:10.1029/2009GL041345.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12362 2833 188
PDF Downloads 7192 1558 129