Internal Variability in Projections of Twenty-First-Century Arctic Sea Ice Loss: Role of the Large-Scale Atmospheric Circulation

Justin J. Wettstein National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Justin J. Wettstein in
Current site
Google Scholar
PubMed
Close
and
Clara Deser National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition.

September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends.

Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.

Corresponding author address: Justin J. Wettstein, College of Earth, Ocean, and Atmospheric Sciences, School of Public Policy, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331. E-mail: justinw@coas.oregonstate.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition.

September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends.

Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.

Corresponding author address: Justin J. Wettstein, College of Earth, Ocean, and Atmospheric Sciences, School of Public Policy, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331. E-mail: justinw@coas.oregonstate.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save
  • Belchansky, G. I., D. C. Douglas, V. A. Eremeev, and N. G. Platonov, 2005: Variations in the Arctic's multiyear sea ice cover: A neural network analysis of SMMR-SSM/I data, 1979–2004. Geophys. Res. Lett.,32, L09605, doi:10.1029/2005GL022395.

  • Bhatt, U. S., M. A. Alexander, C. Deser, J. E. Walsh, J. S. Miller, M. S. Timlin, J. Scott, and R. A. Tomas, 2008: The atmospheric response to realistic reduced summer Arctic sea ice anomalies. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 91–110.

  • Bitz, C. M., 2008: Some aspects of uncertainty in predicting sea ice thinning. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 63–76.

  • Bitz, C. M., J. K. Ridley, M. Holland, and H. Cattle, 2012: Global climate models and 20th and 21st century Arctic climate change. Arctic Climate Change: The ACSYS Decade and Beyond, P. Lemke and H.-W. Jacobi, Eds., Springer, 405–436.

  • Blüthgen, J., R. Gerdes, and M. Werner, 2012: Atmospheric response to the extreme Arctic sea ice conditions in 2007. Geophys. Res. Lett.,39, L02707, doi:10.1029/2011GL050486.

  • Boé, J., A. Hall, and X. Qu, 2010: Sources of spread in simulations of Arctic sea ice loss over the twenty-first century. Climatic Change, 99, 637645.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 62926311.

  • Clement, A., P. DiNezio, and C. Deser, 2011: Rethinking the ocean's role in the Southern Oscillation. J. Climate, 24, 40564072.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett.,35, L01703, doi:10.1029/2007GL031972.

  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24 (3), 257260.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and H. Teng, 2008: Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979–2007. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 7–26.

  • Deser, C., G. Magnusdottir, R. Saravanan, and A. S. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012c: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and C. M. Bitz, 2006: Atmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution. J. Climate, 19, 24152436.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., E. C. Hunke, and M. M. Holland, 2008: Sensitivity of Arctic sea ice thickness to intermodel variations in the surface energy budget. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 77–90.

  • Dommenget, D., and M. Latif, 2008: Generation of hyper climate modes. Geophys. Res. Lett.,35, L02706, doi:10.1029/2007GL031087.

  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: Sea ice index. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g02135.html.]

  • Fowler, C., 2003: Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html.]

  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett.,34, L17503, doi:10.1029/2007GL030995.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Holland, M. M., C. M. Bitz, L.-B. Tremblay, and D. A. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 133–150.

  • Hu, Z.-Z., A. Kumar, B. Jha, and B. Huang, 2012: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 23562373.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett.,38, L15708, doi:10.1029/2011GL048008.

  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 5433–5450.

    • Search Google Scholar
    • Export Citation
  • Kvamstø, N. G., P. Skeie, and D. B. Stephenson, 2004: Impact of Labrador sea-ice extent on the North Atlantic Oscillation. Int. J. Climatol., 24, 603612.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367.

    • Search Google Scholar
    • Export Citation
  • L'Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett.,35, L20701, doi:10.1029/2008GL035205.

  • Li, C., and J. J. Wettstein, 2012: Thermally driven and eddy-driven jet variability in reanalysis. J. Climate, 25, 15871596.

  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm-track characteristics of the response. J. Climate, 17, 857876.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, H. J. Zwally, D. Yi, and W. J. Emery, 2007: A younger, thinner ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett.,34, L24501, doi:10.1029/2007GL032043.

  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756.

  • Nghiem, S. V., Y. Chao, G. Neumann, P. Li, D. K. Perovich, T. Street, and P. Clemente-Colon, 2006: Depletion of perennial sea ice in the east Arctic Ocean. Geophys. Res. Lett.,33, L17501, doi:10.1029/2006GL027198.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett.,34, L12705, doi:10.1029/2007GL029897.

  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett.,39, L09704, doi:10.1029/2012GL051330.

  • Ogi, M., K. Yamazaki, and J. M. Wallace, 2010: Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett.,37, L07701, doi:10.1029/2009GL042356.

  • Overland, J. E., and M. Wang, 2005: The third Arctic climate pattern: 1930s and early 2000s. Geophys. Res. Lett.,32, L23808, doi:10.1029/2005GL024254.

  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett.,34, L19505, doi:10.1029/2007GL031480.

  • Polyakov, I. V., and Coauthors, 2005: One more step toward a warmer Arctic. Geophys. Res. Lett.,32, L17605, doi:10.1029/2005GL023740.

  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea ice extent. Geophys. Res. Lett.,31, L09401, doi:10.1029/2004GL019492.

  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663.

  • Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26 (23), 34693472.

  • Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res.,116, D15105, doi:10.1029/2011JD015847.

  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic's shrinking sea-ice cover. Science, 315, 15331536.

  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishio, E. Carmack, F. McLaughlin, S. Zimmerman, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Smedsrud, L. H., A. Sirevaag, K. Kloster, A. Sorteberg, and S. Sandven, 2011: Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. Cryosphere, 5, 821829.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., T. Furevik, H. Drange, and N. G. Kvamstø, 2005: Effects of simulated natural variability on Arctic temperature projections. Geophys. Res. Lett.,32, L18708, doi:10.1029/2005GL023404.

  • Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing general circulation model simulations of atmospheric teleconnection patterns. J. Climate, 22, 43484372.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. W. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett.,34, L09501, doi:10.1029/2007GL029703.

  • Stroeve, J. C., J. Maslanik, M. C. Serreze, I. Rigor, W. Meier, and C. Fowler, 2011: Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett.,38, L02502, doi:10.1029/2010GL045662.

  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett.,39, L16502, doi:10.1029/2012GL052676.

  • Tebaldi, C., and R. Knutti, 2007: The use of the multimodel ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2011: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., 36, 18131834, doi:10.1007/s00382-010-0749-7.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 (9), 12971300.

    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., C. Deser, M. Alexander, and R. Tomas, 2010: Atmospheric forcing of Fram Strait sea ice export: A closer look. Climate Dyn., 35, 13491360, doi:10.1007/s00382-009-0647-z.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey, 2012: Twenty-first-century Arctic climate change in CCSM4. J. Climate, 25, 26962710.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14, 35083517.

  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett.,36, L05706, doi:10.1029/2008GL036706.

  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2008: Sea ice-albedo feedback and nonlinear Arctic climate change. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 111–131.

  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1101 349 76
PDF Downloads 583 115 5