Multiyear CloudSat and CALIPSO Observations of the Dependence of Cloud Vertical Distribution on Sea Surface Temperature and Tropospheric Dynamics

Anish Kumar M. Nair Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India

Search for other papers by Anish Kumar M. Nair in
Current site
Google Scholar
PubMed
Close
and
K. Rajeev Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India

Search for other papers by K. Rajeev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Utilizing the synergy of the capabilities of CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and ~4.5 years of their observations, this paper investigates the dependence of the altitude distribution and thickness of tropical clouds on sea surface temperature (SST). Variations in the altitude distribution of clouds with SST show three distinct regimes: SST < 27.5°C, 27.5° < SST < 29°C, and SST > 29°C. At an SST < 27.5°C, the convection is rather weak, so that most of the clouds are limited to <2-km altitude with peak occurrence at 1–1.5 km. The frequency of occurrence of the low-altitude clouds as well as the prominence of the peak at ~1.5 km consistently decreases for SST > 24°C. Vertical development of clouds through the 3–12-km-altitude region increases for SST > 27.5°C to achieve maximum cloud occurrence and thickness in the SST range of 29°–30.5°C. Penetration of the deep convective clouds to altitudes >15 km and their frequency of occurrence increase with SST until ~30°C. These observations reveal two differences with the SST dependence of total cloudiness observed using passive imager data: (i) the increase in cloudiness at an SST > 26°–27°C observed using the imager data is found to be influenced by the increase in cirrus clouds generated by deep convective outflows and is not directly driven by the local SST, and (ii) the total cloudiness does not decrease for SST > 29.5°C as observed using imagers, but weakly increases until an SST of ~30.5°C. The role of the spatial gradient of SST and atmospheric dynamical parameters in modulating the observed SST dependence of cloudiness at different SST regimes is investigated.

Corresponding author address: K. Rajeev, Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India. E-mail: k_rajeev@vssc.gov.in

Abstract

Utilizing the synergy of the capabilities of CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and ~4.5 years of their observations, this paper investigates the dependence of the altitude distribution and thickness of tropical clouds on sea surface temperature (SST). Variations in the altitude distribution of clouds with SST show three distinct regimes: SST < 27.5°C, 27.5° < SST < 29°C, and SST > 29°C. At an SST < 27.5°C, the convection is rather weak, so that most of the clouds are limited to <2-km altitude with peak occurrence at 1–1.5 km. The frequency of occurrence of the low-altitude clouds as well as the prominence of the peak at ~1.5 km consistently decreases for SST > 24°C. Vertical development of clouds through the 3–12-km-altitude region increases for SST > 27.5°C to achieve maximum cloud occurrence and thickness in the SST range of 29°–30.5°C. Penetration of the deep convective clouds to altitudes >15 km and their frequency of occurrence increase with SST until ~30°C. These observations reveal two differences with the SST dependence of total cloudiness observed using passive imager data: (i) the increase in cloudiness at an SST > 26°–27°C observed using the imager data is found to be influenced by the increase in cirrus clouds generated by deep convective outflows and is not directly driven by the local SST, and (ii) the total cloudiness does not decrease for SST > 29.5°C as observed using imagers, but weakly increases until an SST of ~30.5°C. The role of the spatial gradient of SST and atmospheric dynamical parameters in modulating the observed SST dependence of cloudiness at different SST regimes is investigated.

Corresponding author address: K. Rajeev, Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India. E-mail: k_rajeev@vssc.gov.in
Save
  • Allan, R. P., and B. J. Soden, 2007: Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys. Res. Lett., 34, L18705, doi:10.1029/2007GL031460.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., J. Srinivasan, and S. Gadgil, 1996: Tropical deep convection, convective available potential energy and sea surface temperature. J. Meteor. Soc. Japan, 74, 155166.

    • Search Google Scholar
    • Export Citation
  • Bony, S., K.-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate,10, 2055–2077.

  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 (D8), 12 79112 794.

    • Search Google Scholar
    • Export Citation
  • Cho, H., C.-H. Ho, and Y.-S. Choi, 2012: The observed variation in cloud-induced longwave radiation in response to sea surface temperature over the Pacific warm pool from MTSAT-1R imagery. Geophys. Res. Lett., 39, L18802, doi:10.1029/2012GL052700.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, doi:10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., M. Baker, and D. L. Hartmann, 2002: Tropical cirrus and water vapor: An effective Earth infrared iris feedback? Atmos. Chem. Phys., 2, 3137, doi:10.5194/acp-2-31-2002.

    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1994: Influence of ocean surface conditions on atmospheric thermodynamic structure and deep convection. J. Climate, 7, 10921108.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143.

  • Gettelman, A., and P. M. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80, 911924.

  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science,238, 657–659, doi:10.1126/science.238.4827.657.

  • Hartmann, D. L., 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34, L09811, doi:10.1029/2007GL029335.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc.,77, 437–471.

  • Lau, K.-M., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate,10, 381–392.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci.,44, 2418–2436.

  • Mace, G. G., Q. Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res.,114, D00A26, doi:10.1029/2007jd009755.

  • Martin, E. R., and C. Schumacher, 2012: The relationship between tropical warm pool precipitation, sea surface temperature, and large-scale vertical motion in IPCC AR4 models. J. Atmos. Sci., 69, 185194.

    • Search Google Scholar
    • Export Citation
  • Meenu, S., K. Rajeev, K. Parameswaran, and A. K. M. Nair, 2010: Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J. Geophys. Res.,115, D05205, doi:10.1029/2009JD011802.

  • Meenu, S., K. Rajeev, and K. Parameswaran, 2011: Regional and vertical distribution of semitransparent cirrus clouds over the tropical Indian region derived from CALIPSO data. J. Atmos. Sol. Terr. Phys., 73, 19671979, doi:10.1016/j.jastp.2011.06.007.

    • Search Google Scholar
    • Export Citation
  • Meenu, S., K. Parameswaran, and K. Rajeev, 2012: Role of sea surface temperature and wind convergence in regulating convection over the tropical Indian Ocean. J. Geophys. Res., 117, D14102, doi:10.1029/2011JD016947.

    • Search Google Scholar
    • Export Citation
  • Mehta, S. K., B. V. K. Murthy, D. N. Rao, M. V. Ratnam, K. Parameswaran, K. Rajeev, C. S. Raju, and K. G. Rao, 2008: Identification of tropical convective tropopause and its association with cold point tropopause. J. Geophys. Res., 113, D00B04, doi:10.1029/2007JD009625.

    • Search Google Scholar
    • Export Citation
  • Nair, A. K. M., K. Rajeev, S. Sijikumar, and S. Meenu, 2011: Characteristics of a persistent “pool of inhibited cloudiness” and its genesis over the Bay of Bengal associated with the Asian summer monsoon. Ann. Geophys., 29, 12471252, doi:10.5194/angeo-29-1247-2011.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1996: Some remarks on mechanisms for the regulation of tropical sea surface temperature. Clouds, Chemistry and Climate, P. J. Crutzen and V. Ramanathan, Eds., NATO ASI Series I, Vol. 35, Springer, 153–172.

  • Rajeev, K., and Coauthors, 2008: Observational assessment of the potential of satellite-based water vapor and thermal IR brightness temperatures in detecting semitransparent cirrus. Geophys. Res. Lett., 35, L08808, doi:10.1029/2008GL033393.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., C. L. Gentemann, and G. K. Corlett, 2010: Evaluation of AATSR and TMI satellite SST data. J. Climate, 23, 152165.

  • Rondanelli, R., and R. S. Lindzen, 2008: Observed variations in convective precipitation fraction and stratiform area with sea surface temperature. J. Geophys. Res., 113, D16119, doi:10.1029/2008JD010064.

    • Search Google Scholar
    • Export Citation
  • Sabin, T. P., C. A. Babu, and P. V. Joseph, 2013: SST–convection relation over tropical oceans. Int. J. Climatol., 33, 14241435, doi:10.1002/joc.3522.

    • Search Google Scholar
    • Export Citation
  • Sijikumar, S., and K. Rajeev, 2012: Role of the Arabian Sea warm pool on the precipitation characteristics during the monsoon onset period. J. Climate, 25, 18901899.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Su, H., J. H. Jiang, J. Teixeira, A. Gettelman, X. Huang, G. Stephens, D. Vane, and V. S. Perun, 2011: Comparison of regime-sorted tropical cloud profiles observed by CloudSat with GEOS5 analyses and two general circulation model simulations. J. Geophys. Res., 116, D09104, doi:10.1029/2010JD014971.

    • Search Google Scholar
    • Export Citation
  • Su, H., and Coauthors, 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res., 118, 27622780, doi:10.1029/2012JD018575.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., G. K. Walker, and K.-M. Lau, 1999: Mechanisms regulating sea-surface temperatures and deep convection in the tropics. Geophys. Res. Lett., 26, 1019–1022, doi:10.1029/1999GL900197.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., G. K. Walker, Y. P. Zhou, G. A. Schmidt, K.-M. Lau, and R. F. Cahalan, 2008: Effects of doubled CO2 on tropical sea surface temperatures (SSTs) for onset of deep convection and maximum SST: Simulations based inferences. Geophys. Res. Lett.,35, L12707, doi:10.1029/2008GL033872.

  • Tompkins, A. M., 2001: On the relationship between tropical convection and sea surface temperature. J. Climate,14, 633–637.

  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate,9, 161–188.

  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98 (D7), 12 88112 893.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., M. A. Ringer, and C. A. Senior, 2003: Evaluating the cloud response to climate change and current climate variability. Climate Dyn., 20, 705721.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett.,34, L19803, doi:10.1029/2007GL030135.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. L. Hartmann, and R. Wood, 2008: Dynamic effects on the tropical cloud radiative forcing and radiation budget. J. Climate, 21, 23372351.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2011: The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J. Geophys. Res., 116, D23103, doi:10.1029/2011JD016459.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate,6, 1898–1913.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 123 59
PDF Downloads 179 43 1