Impact of Evapotranspiration on Dry Season Climate in the Amazon Forest

Anna Harper College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, Devon, United Kingdom, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Anna Harper in
Current site
Google Scholar
PubMed
Close
,
Ian T. Baker Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Ian T. Baker in
Current site
Google Scholar
PubMed
Close
,
A. Scott Denning Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by A. Scott Denning in
Current site
Google Scholar
PubMed
Close
,
David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
,
Donald Dazlich Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Donald Dazlich in
Current site
Google Scholar
PubMed
Close
, and
Mark Branson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Mark Branson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moisture recycling can be an important source of rainfall over the Amazon forest, but this process relies heavily upon the ability of plants to access soil moisture. Evapotranspiration (ET) in the Amazon is often maintained or even enhanced during the dry season, when net radiation is high. However, ecosystem models often over predict the dry season water stress. The authors removed unrealistic water stress in an ecosystem model [the Simple Biosphere Model, version 3 (SiB3)] and examined the impacts of enhanced ET on the dry season climate when coupled to a GCM. The “stressed” model experiences dry season water stress and limitations on ET, while the “unstressed” model has enhanced root water access and exhibits strong drought tolerance.

During the dry season in the southeastern Amazon, SiB3 unstressed has significantly higher latent heat flux (LH) and lower sensible heat flux (SH) than SiB3 stressed. There are two competing impacts on the climate in SiB3 unstressed: cooling resulting from lower SH and moistening resulting from higher LH. During the average dry season, the cooling plays a larger role and the atmosphere is more statically stable, resulting in less precipitation than in SiB3 stressed. During dry season droughts, significantly higher LH in SiB3 unstressed is a necessary but not sufficient condition for stronger precipitation. The moistening effect of LH dominates when the Bowen ratio (BR = SH/LH) is >1.0 in SiB3 stressed and precipitation is up to 26% higher in SiB3 unstressed. An implication of this analysis is that forest conservation could enable the Amazon to cope with drying conditions in the future.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00074.s1.

Corresponding author address: Anna Harper, Laver Building, North Park Road, University of Exeter, Exeter, Devon EX4 4QE, United Kingdom. E-mail: a.harper@exeter.ac.uk

Abstract

Moisture recycling can be an important source of rainfall over the Amazon forest, but this process relies heavily upon the ability of plants to access soil moisture. Evapotranspiration (ET) in the Amazon is often maintained or even enhanced during the dry season, when net radiation is high. However, ecosystem models often over predict the dry season water stress. The authors removed unrealistic water stress in an ecosystem model [the Simple Biosphere Model, version 3 (SiB3)] and examined the impacts of enhanced ET on the dry season climate when coupled to a GCM. The “stressed” model experiences dry season water stress and limitations on ET, while the “unstressed” model has enhanced root water access and exhibits strong drought tolerance.

During the dry season in the southeastern Amazon, SiB3 unstressed has significantly higher latent heat flux (LH) and lower sensible heat flux (SH) than SiB3 stressed. There are two competing impacts on the climate in SiB3 unstressed: cooling resulting from lower SH and moistening resulting from higher LH. During the average dry season, the cooling plays a larger role and the atmosphere is more statically stable, resulting in less precipitation than in SiB3 stressed. During dry season droughts, significantly higher LH in SiB3 unstressed is a necessary but not sufficient condition for stronger precipitation. The moistening effect of LH dominates when the Bowen ratio (BR = SH/LH) is >1.0 in SiB3 stressed and precipitation is up to 26% higher in SiB3 unstressed. An implication of this analysis is that forest conservation could enable the Amazon to cope with drying conditions in the future.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00074.s1.

Corresponding author address: Anna Harper, Laver Building, North Park Road, University of Exeter, Exeter, Devon EX4 4QE, United Kingdom. E-mail: a.harper@exeter.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 2.08 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Aragao, L., Y. Malhi, N. Barbier, A. Lima, Y. Shimabukuro, L. Anderson, and S. Saatchi, 2008: Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. Roy. Soc. London, B363, 17791785.

    • Search Google Scholar
    • Export Citation
  • Baker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. da Rocha, 2008: Seasonal drought stress in the Amazon: Reconciling models and observations. J. Geophys. Res.,113, G00B01, doi:10.1029/2007JG000644.

  • Baker, I. T., and Coauthors, 2013: Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agric. For. Meteor., 182–183, 177–188.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and S. J. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299.

  • Chen, Y., and Coauthors, 2011: Forecasting fire season severity in South America using sea surface temperature anomalies. Science, 334, 787791, doi:10.1126/science.1209472.

    • Search Google Scholar
    • Export Citation
  • Collatz, G., J. Ball, C. Grivet, and J. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G., M. Ribas-Carbo, and J. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., M. C. Biajoli, L. Sanches, A. C. M. Malhado, L. R. Hutyra, H. R. da Rocha, R. G. Aguiar, and A. C. de Araujo, 2010: Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? J. Geophys. Res., 115, G04021, doi:10.1029/2009JG001179.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., and Coauthors, 2008: Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212215.

  • da Rocha, H. R., and Coauthors, 2009: Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res., 114, G00B12, doi:10.1029/2007JG000640.

    • Search Google Scholar
    • Export Citation
  • Denning, A. S., G. J. Collatz, C. G. Zhang, D. A. Randall, J. A. Berry, P. J. Sellers, G. D. Colello, and D. A. Dazlich, 1996: Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. 1. Surface carbon fluxes. Tellus, 48B, 521–542.

    • Search Google Scholar
    • Export Citation
  • Denning, A. S., N. Zhang, C. Yi, M. Branson, K. Davis, J. Kleist, and P. Bakwin, 2008: Evaluation of modeled atmospheric boundary layer depth at the WLEF tower. Agric. For. Meteor., 148, 206–215.

    • Search Google Scholar
    • Export Citation
  • Ding, P., and D. A. Randall, 1998: A cumulus parameterization with multiple cloud base levels. J. Geophys. Res., 103 (D10), 11 341–11 353.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880.

  • Espinoza, J. C., J. Ronchail, J. L. Guyot, C. Junquas, P. Vauchel, W. Lavado, G. Drapeau, and R. Pombosa, 2011: Climate variability and extreme drought in the upper Solimões River (western Amazon basin): Understanding the exceptional 2010 drought. Geophys. Res. Lett., 38, L13406, doi:10.1029/2011GL047862.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., M. Williams, R. L. Do Vale, A. L. Da Costa, and P. Meir, 2006: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ., 29, 151165.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., and D. A. Randall, 2002: Interactions between cloud microphysics and cumulus convection in a general circulation model. J. Atmos. Sci., 59, 30743098.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529.

    • Search Google Scholar
    • Export Citation
  • Fu, R., and W. Li, 2004: The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol., 78, 97110.

    • Search Google Scholar
    • Export Citation
  • Gabriel, P. M., P. T. Partain, and G. L. Stephens, 2001: Parameterization of atmospheric radiative transfer. Part II: Selection rules. J. Atmos. Sci., 58, 3411–3423.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, 2000: Global soil data products (IGBP-DIS). International Geosphere-Biosphere Programme, Data and Information System, CD-ROM. [Available online at http://www.daac.ornl.gov.]

  • Harper, A. B., A. S. Denning, I. T. Baker, M. D. Branson, L. Prihodko, and D. A. Randall, 2010: Role of deep soil moisture in modulating climate in the Amazon rainforest. Geophys. Res. Lett., 37, L05802, doi:10.1029/2009GL042302.

    • Search Google Scholar
    • Export Citation
  • Hasler, N., and R. Avissar, 2007: What controls evapotranspiration in the Amazon basin? J. Hydrometeor., 8, 380395.

  • Hilker, T., A. I. Lyapustin, C. J. Tucker, P. J. Sellers, F. G. Hall, and Y. Wang, 2012: Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter. Remote Sens. Environ., 127, 370384, doi:10.1016/j.rse.2012.08.035.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21, 5145–5153.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze, 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389411.

    • Search Google Scholar
    • Export Citation
  • Jipp, P. H., D. C. Nepstad, D. K. Cassel, and C. R. De Carvalho, 1998: Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change, 39, 395–412.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Lathuilliere, M. J., M. S. Johnson, and S. D. Donner, 2012: Water use by terrestrial ecosystems: Temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett., 7, 024024, doi:10.1088/1748-9326/7/2/024024.

  • Lee, J. E., R. S. Oliveira, T. E. Dawson, and I. Fung, 2005: Root functioning modifies seasonal climate. Proc. Natl. Acad. Sci. USA, 102, 17 576–17 581.

    • Search Google Scholar
    • Export Citation
  • Lee, J. E., B. R. Lintner, C. K. Boyce, and P. J. Lawrence, 2011: Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett., 38, L19706, doi:10.1029/2011GL049066.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad, 2011: The 2010 Amazon drought. Science, 331, 554.

  • Li, W. H., and R. Fu, 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF re-analysis. J. Climate, 17, 2637–2651.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and J. A. Marengo, 2001: Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin. J. Climate, 14, 43084318.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179.

    • Search Google Scholar
    • Export Citation
  • Los, S. O., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1, 183199.

  • Malhado, A., M. H. Costa, F. Z. de Lima, K. C. Portilho, and D. N. Figueiredo, 2009: Seasonal leaf dynamics in an Amazonian tropical forest. For. Ecol. Manage., 258, 11611165.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and J. Wright, 2004: Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. Roy. Soc. London, B359, 311329.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. H. Li, and C. A. Nobre, 2008: Climate change, deforestation, and the fate of the Amazon. Science, 319, 169172.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2004: Interdecadal variability and trends of rainfall across the Amazon basin. Theor. Appl. Climatol., 78, 7996.

  • Marengo, J. A., 2006: On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Rev. Bras. Meteor., 21, 119.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., C. A. Nobre, J. Tomasella, M. F. Cardoso, and M. D. Oyama, 2008a: Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. Roy. Soc. London, B363, 17731778.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2008b: The drought of Amazonia in 2005. J. Climate, 21, 495516.

  • Marengo, J. A., J. Tomasella, L. Alves, W. Soares, and D. Rodriguez, 2011: The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett., 38, L12703, doi:10.1029/2011GL047436.

    • Search Google Scholar
    • Export Citation
  • McKee, T., N. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

  • Miller, S., M. Goulden, M. Menton, H. da Rocha, H. de Freitas, A. Figueira, and C. de Sousa, 2004: Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl., 14 (Suppl.), S114S126.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2007: Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA,104, 4820–4823, doi:10.1073/pnas.0611338104.

  • NCL, 2013: The NCAR command language (version 6.1.1). UCAR/NCAR/CISL/VETS. [Available online at http://www.ncl.ucar.edu/.]

  • Nepstad, D. C., and Coauthors, 1994: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666–669.

    • Search Google Scholar
    • Export Citation
  • Nepstad, D. C., I. M. Tohver, D. Ray, P. Moutinho, and G. Cardinot, 2007: Mortality of large trees and lianas following experimental drought in an amazon forest. Ecology, 88, 22592269.

    • Search Google Scholar
    • Export Citation
  • Nepstad, D. C., C. Stickler, B. Soares, and F. Merry, 2008: Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philos. Trans. Roy. Soc. London, B363, 17371746, doi:10.1098/rstb.2007.0036.

    • Search Google Scholar
    • Export Citation
  • Oliveira, R. S., T. E. Dawson, S. S. O. Burgess, and D. C. Nepstad, 2005: Hydraulic redistribution in three Amazonian trees. Oecologia, 145, 354–363.

    • Search Google Scholar
    • Export Citation
  • Pan, D. M., and D. A. Randall, 1998: A cumulus parametrization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Phillips, O. L., and Coauthors, 2009: Drought sensitivity of the Amazon rainforest. Science, 323, 13441347.

  • Phillips, O. L., and Coauthors, 2010: Drought-mortality relationships for tropical forests. New Phytol., 187, 631646.

  • Powell, T. L., and Coauthors, 2013: Evaluating model predictions of carbon fluxes for Amazonian rainforests subjected to severe drought. New Phytol., 200, 350–365, doi:10.1111/nph.12390.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Abeles, and T. G. Corsetti, 1985: Seasonal simulations of the planetary boundary layer and boundary layer stratocumulus clouds with a general circulation model. J. Atmos. Sci., 42, 641–676.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 1996: A revised land surface parameterization (SiB2) for GCMS. Part III: The greening of the Colorado State University general circulation model. J. Climate, 9, 738–763.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., R. P. Heikes, and D. A. Randall, 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 24712490.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Saatchi, S. S., R. A. Houghton, R. Alvala, J. V. Soares, and Y. Yu, 2007: Distribution of aboveground live biomass in the Amazon basin. Global Change Biol., 13, 816837, doi:10.1111/j.1365-2486.2007.01323.x.

    • Search Google Scholar
    • Export Citation
  • Saatchi, S. S., and Coauthors, 2011: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA, 108, 98999904.

    • Search Google Scholar
    • Export Citation
  • Saatchi, S. S., S. Asefi-Najafabady, Y. Malhi, L. Aragao, L. Anderson, R. Myneni, and R. Nemani, 2013: Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl. Acad. Sci. USA, 110, 565570.

    • Search Google Scholar
    • Export Citation
  • Saleska, S. R., K. Didan, A. R. Huete, and H. R. da Rocha, 2007: Amazon forests green-up during 2005 drought. Science, 318, 612.

  • Samanta, A., S. Ganguly, H. Hashimoto, S. Devadiga, E. Vermote, Y. Knyazikhin, R. R. Nemani, and R. B. Myneni, 2010: Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett., 37, L05401, doi:10.1029/2009GL042154.

    • Search Google Scholar
    • Export Citation
  • Samanta, A., S. Ganguly, E. Vermote, R. R. Nemani, and R. B. Myneni, 2012: Why is remote sensing of Amazon forest greenness so challenging? Earth Interact., 16, doi:10.1175/2012EI440.1.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505–531.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., J. A. Berry, G. J. Collatz, C. B. Field, and F. G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ., 42, 187216.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996a: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Climate, 9, 676–705.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A. Randall, 1996b: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 3391–3409.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 22242243.

    • Search Google Scholar
    • Export Citation
  • Taylor, I. H., E. Burke, L. McColl, P. Falloon, G. R. Harris, and D. McNeall, 2012: Contributions to uncertainty in projections of future drought under climate change scenarios. Hydrol. Earth Syst. Sci. Discuss.,9, 12 613–12 653, doi:10.5194/hessd-9-12613-2012.

  • Taylor, K., D. Williamson, and F. Zwiers, 2000: AMIP II sea surface temperature and sea ice concentration boundary conditions. PCMDI Rep. 60. [Available online at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php.]

  • Toomey, M., D. A. Roberts, C. Still, M. L. Goulden, and J. P. McFadden, 2011: Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophys. Res. Lett., 38, L19704, doi:10.1029/2011gl049041.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381.

  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and spot vegetation NDVI data. Int. J. Remote Sens., 26, 44854498.

    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., and R. Stockli, 2005: Prognostic canopy air space solutions for land surface exchanges. Theor. Appl. Climatol., 80, 245257.

    • Search Google Scholar
    • Export Citation
  • von Randow, R. C. S., C. von Randow, R. W. A. Hutjes, J. Tomasella, and B. Kruijt, 2012: Evapotranspiration of deforested areas in central and southwestern Amazonia. Theor. Appl. Climatol., 109, 205220.

    • Search Google Scholar
    • Export Citation
  • Vourlitis, G., F. Lobo, P. Zeilhofer, and J. Nogueira, 2011: Temporal patterns of net CO2 exchange for a tropical semideciduous forest of the southern Amazon basin. J. Geophys. Res., 116, G03029, doi:10.1029/2010JG001524.

    • Search Google Scholar
    • Export Citation
  • Xu, L. A., A. Samanta, M. H. Costa, S. Ganguly, R. R. Nemani, and R. B. Myneni, 2011: Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett., 38, L07402, doi:10.1029/2011GL046824.

    • Search Google Scholar
    • Export Citation
  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., doi:10.1007/s00382-012-1582-y, in press.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J.-H. Yoon, J. Marengo, A. Subramaniam, C. A. Nobre, A. Mariotti, and J. D. Neelin, 2008: Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett., 3, 014002, doi:10.1088/1748-9326/3/1/014002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1470 472 215
PDF Downloads 889 144 12