Local Balance and Variability of Atmospheric Heat Budget over Oceans: Observation and Reanalysis-Based Estimates

Sun Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Sun Wong in
Current site
Google Scholar
PubMed
Close
,
Tristan S. L’Ecuyer Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
William S. Olson JCET, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
,
Xianan Jiang Joint Institute for Regional Earth System Science & Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
, and
Eric J. Fetzer Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Eric J. Fetzer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere and the surface are calculated over the oceans using satellite-based radiative and sensible heat fluxes and latent heating from precipitation estimates. The convergence is then compared with column-integrated atmospheric heating based on Tropical Rainfall Measuring Mission data as well as the heating calculated using temperatures from the Atmospheric Infrared Sounder and wind fields from the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Corresponding calculations using MERRA and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis heating rates and heat fluxes are also performed. The geographical patterns of atmospheric heating rates show heating regimes over the intertropical convergence zone and summertime monsoons and cooling regimes over subsidence areas in the subtropical oceans. Compared to observation-based datasets, the reanalyses have larger atmospheric heating rates in heating regimes and smaller cooling rates in cooling regimes. For the averaged heating rates over the oceans in 40°S–40°N, the observation-based datasets have net atmospheric cooling rates (from −15 to −22 W m−2) compared to the reanalyses net warming rates (5.0–5.2 W m−2). This discrepancy implies different pictures of atmospheric heat transport. Wavelet spectra of atmospheric heating rates show distinct maxima of variability in annual, semiannual, and/or intraseasonal time scales. In regimes where deep convection frequently occurs, variability is mainly driven by latent heating. In the subtropical subsidence areas, variability in radiative heating is comparable to that in latent heating.

Corresponding author address: Sun Wong, MS 233-304, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov

Abstract

The authors quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere and the surface are calculated over the oceans using satellite-based radiative and sensible heat fluxes and latent heating from precipitation estimates. The convergence is then compared with column-integrated atmospheric heating based on Tropical Rainfall Measuring Mission data as well as the heating calculated using temperatures from the Atmospheric Infrared Sounder and wind fields from the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Corresponding calculations using MERRA and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis heating rates and heat fluxes are also performed. The geographical patterns of atmospheric heating rates show heating regimes over the intertropical convergence zone and summertime monsoons and cooling regimes over subsidence areas in the subtropical oceans. Compared to observation-based datasets, the reanalyses have larger atmospheric heating rates in heating regimes and smaller cooling rates in cooling regimes. For the averaged heating rates over the oceans in 40°S–40°N, the observation-based datasets have net atmospheric cooling rates (from −15 to −22 W m−2) compared to the reanalyses net warming rates (5.0–5.2 W m−2). This discrepancy implies different pictures of atmospheric heat transport. Wavelet spectra of atmospheric heating rates show distinct maxima of variability in annual, semiannual, and/or intraseasonal time scales. In regimes where deep convection frequently occurs, variability is mainly driven by latent heating. In the subtropical subsidence areas, variability in radiative heating is comparable to that in latent heating.

Corresponding author address: Sun Wong, MS 233-304, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov
Save
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor., 49, 535543.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrieval, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., T. S. L’Ecuyer, and G. L. Stephens, 2003: The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances. J. Geophys. Res., 108, 4107, doi:10.1029/2002JD002611.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of AIRS temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Farge, M., 1992: Wavelet transforms and their application to turbulence. Annu. Rev. Fluid Mech., 24, 395457.

  • Fetzer, E. J., J. Teixeira, E. T. Olsen, and E. F. Fishbein, 2004: Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophys. Res. Lett., 31, L17102, doi:10.1029/2004GL020174.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, C. L. Shie, T. S. L’Ecuyer, and W. K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric heating profiles. J. Climate, 22, 63566376.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18 47118 488.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., W. L. Darnell, and A. C. Wilber, 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor., 31, 13611367.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., D. P. Kratz, P. W. Stackhouse Jr., and A. C. Wilber, 2001: The Langley parameterized shortwave algorithm (LPSA) for surface radiation budget studies. NASA Tech. Rep. NASA/TP-20010211272, 31 pp.

  • Huffman, G. J., R. F. Adler, M. Morrissev, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical atmospheric energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20, 45484571.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. McGarragh, 2010: A 10-year climatology of atmospheric radiative heating and its vertical structure from TRMM observations. J. Climate, 23, 519541.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., and Coauthors, 2010: NPOESS: Next-Generation Operational Global Earth Observations. Bull. Amer. Meteor. Soc., 91, 727740.

    • Search Google Scholar
    • Export Citation
  • Lin, B., P. W. Stackhouse Jr., P. Minnis, B. A. Wielicki, Y. Hu, W. Sun, T.-F. Fan, and L. M. Hinkelman, 2008: Assessment of global annual atmospheric energy balance from satellite observations. J. Geophys. Res., 113, D16114, doi:10.1029/2008JD009869.

    • Search Google Scholar
    • Export Citation
  • Olsen, E. T., S. Granger, E. Manning, and J. Blaisdell, 2007: AIRS/AMSU/HSB version 5 level 3 quick start: Version 1.1. Jet Propulsion Laboratory/California Institute of Technology Rep., 25 pp.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Document of versions 5.0.1, 5.1.0, and 5.2.0. NASA Global Modeling and Data Assimilation Tech. Rep. 27, 188 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-era retrospective analysis for research and applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schumacher, C., P. E. Ciesielski, and M. H. Zhang, 2008: Tropical cloud heating profiles: Analysis from KWAJEX. Mon. Wea. Rev., 136, 42894300.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., 2011: Science background for the reprocessing and Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2c) dataset for global water and energy cycle research. Goddard Earth Sciences (GES) Data and Information Services Center Rep., 19 pp. [Available online at http://disc.sci.gsfc.nasa.gov/measures/documentation/Science_of_the_data.GSSTF2c.pdf.]

  • Shie, C.-L., and Coauthors, 2009: A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset. Adv. Atmos. Sci., 26, 10711080.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., K. Hilburn, L. S. Chiu, R. Adler, I.-I. Lin, E. Nelkin, and J. Ardizzone, cited 2011: The Goddard Satellite-based Surface Turbulent Fluxes dataset–version 2c (GSSTF2c): Global (grid of 1° × 1°) daily air-sea surface fluxes from July 1987 to December 2008. Goddard Earth Sciences (GES) Data and Information Services Center. [Available online at http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldingsMEASURES.pl?PROGRAM_List=ChungLinShie.]

  • Shige, S., Y. N. Takayabu, and W.-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Stephens, G. L., and Coauthors, 2012a: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Wild, P. W. Stackhouse Jr., T. L’Ecuyer, S. Kato, and D. S. Henderson, 2012b: The global character of the flux of downward longwave radiation. J. Climate, 25, 23292340.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, J. Blisdell, L. Iredell, F. Keita, L. Kouvaris, G. Molnar, and M. Chahine, 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sound Unit as a function of fractional cloud cover. J. Geophys. Res., 111, D09S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49084924.

    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. H. Kahn, B. Tian, B. H. Lambrigtsen, and H. Ye, 2011a: Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF surface evaporation. J. Climate, 24, 63076321.

    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. Tian, B. Lambrigtsen, and H. Ye, 2011b: The apparent water vapor sinks and heat sources associated with the intraseasonal oscillation of the Indian summer monsoon. J. Climate, 24, 44664479.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., E. J. Fetzer, B. H. Kahn, S. Wong, G. Manipon, A. Guillaume, and B. Wilson, 2013: Cloud-state-dependent sampling in AIRS observations based on CloudSat cloud classification. J. Climate, 26, 83578377.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D10105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 413 235 144
PDF Downloads 112 51 5