Decadal Covariability of the Northern Wintertime Land Surface Temperature and Atmospheric Circulation

B. Yu Climate Data Analysis Section, Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by B. Yu in
Current site
Google Scholar
PubMed
Close
,
X. L. Wang Climate Data Analysis Section, Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by X. L. Wang in
Current site
Google Scholar
PubMed
Close
,
X. B. Zhang Climate Data Analysis Section, Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by X. B. Zhang in
Current site
Google Scholar
PubMed
Close
,
J. Cole Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment Canada, Victoria, British Columbia, Canada

Search for other papers by J. Cole in
Current site
Google Scholar
PubMed
Close
, and
Y. Feng Climate Data Analysis Section, Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Y. Feng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The decadal covariability of northern wintertime land surface temperature and 500-hPa geopotential anomalies is examined using the National Centers for Environmental Prediction–National Center for Atmospheric Research and the Twentieth-Century Reanalyses over the twentieth century and a 996-yr preindustrial climate simulation from the Canadian Earth System Model. Based on the reanalysis data, the covariability is dominated by two leading maximum covariance analysis (MCA) modes. MCA1 is characterized by temperature anomalies over most of Canada, the eastern United States, Mexico, and Eurasian mid- to high latitudes, accompanied by anomalies of opposite sign elsewhere over northern landmasses. MCA2 features temperature anomalies over most of North America, Eurasia, and Greenland with opposite anomalies elsewhere. In the upper troposphere the synoptic vorticity fluxes reinforce the anomalous circulation, while in the lower troposphere advection by the anomalous mean flow offsets the eddy forcing and maintains the decadal temperature perturbation. The MCA1-associated variability has a broad spectrum over decadal–interdecadal time scales, while the MCA2-related variability has a significant power peak around 20 yr. The change of temperature and geopotential trends around 1990 tends to be a decadal-scale shift in winter and has significant features of the leading mode of the decadal covariability. The climate model has broadly similar decadal covariability, including the leading MCA patterns as well as the temporal evolution of the patterns. The decadal temperature and geopotential anomalies primarily covary with the North Atlantic Oscillation but also with the variability of the North Pacific index, while the Southern Oscillation index variability tends to be the least important predictor for the northern decadal temperature and geopotential anomalies.

Corresponding author address: Bin Yu, Climate Research Division, Environment Canada, 4905 Dufferin Street, Toronto ON M3H 5T4, Canada. E-mail: bin.yu@ec.gc.ca

Abstract

The decadal covariability of northern wintertime land surface temperature and 500-hPa geopotential anomalies is examined using the National Centers for Environmental Prediction–National Center for Atmospheric Research and the Twentieth-Century Reanalyses over the twentieth century and a 996-yr preindustrial climate simulation from the Canadian Earth System Model. Based on the reanalysis data, the covariability is dominated by two leading maximum covariance analysis (MCA) modes. MCA1 is characterized by temperature anomalies over most of Canada, the eastern United States, Mexico, and Eurasian mid- to high latitudes, accompanied by anomalies of opposite sign elsewhere over northern landmasses. MCA2 features temperature anomalies over most of North America, Eurasia, and Greenland with opposite anomalies elsewhere. In the upper troposphere the synoptic vorticity fluxes reinforce the anomalous circulation, while in the lower troposphere advection by the anomalous mean flow offsets the eddy forcing and maintains the decadal temperature perturbation. The MCA1-associated variability has a broad spectrum over decadal–interdecadal time scales, while the MCA2-related variability has a significant power peak around 20 yr. The change of temperature and geopotential trends around 1990 tends to be a decadal-scale shift in winter and has significant features of the leading mode of the decadal covariability. The climate model has broadly similar decadal covariability, including the leading MCA patterns as well as the temporal evolution of the patterns. The decadal temperature and geopotential anomalies primarily covary with the North Atlantic Oscillation but also with the variability of the North Pacific index, while the Southern Oscillation index variability tends to be the least important predictor for the northern decadal temperature and geopotential anomalies.

Corresponding author address: Bin Yu, Climate Research Division, Environment Canada, 4905 Dufferin Street, Toronto ON M3H 5T4, Canada. E-mail: bin.yu@ec.gc.ca
Save
  • Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Climate, 24, 65286539.

  • An, S. I., and B. Wang, 2000: Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, Eds., 2012: State of the Climate in 2011. Bull. Amer. Meteor. Soc., 93 (Suppl.), S1S264.

  • Bonsal, B. R., A. Shabbar, and K. Higuchi, 2001: Impacts of low frequency variability modes on Canadian winter temperature. Int. J. Climatol., 21, 95108.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Choi, D.-H., J.-S. Kug, W.-T. Kwon, F.-F. Jin, H.-J. Baek, and S.-K. Min, 2010: Arctic Oscillation responses to greenhouse warming and role of synoptic eddy feedback. J. Geophys. Res., 115, D17103, doi:10.1029/2010JD014160.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. Barlow, P. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 53355343.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, B. Mathew, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and North Pacific during boreal winter since 1900. J. Climate, 17, 31093124.

    • Search Google Scholar
    • Export Citation
  • Eskridge, R. E., J. Y. Ku, S. T. Rao, P. S. Porter, and I. G. Zurbenko, 1997: Separating different scales of motion in time series of meteorological variables. Bull. Amer. Meteor. Soc., 78, 14731483.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C., P. Kushner, and J. Cohen, 2007: Stratospheric control of the extratropical circulation response to surface forcing. Geophys. Res. Lett., 34, L21802, doi:10.1029/2007GL031626.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual ENSO and interdecadal ENSO-like variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11, 12871306.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., 1994: Decadal-scale climate variability in the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135162.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., S. Ishizaki, and Y. Tanimoto, 1996: Examination of the strengthening of the wintertime mid-latitude westerlies over the North Pacific in the 1970s. J. Meteor. Soc. Japan, 74, 715721.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103145.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485.

  • Hildebrand, F. B., 1956: Introduction to Numerical Analysis. McGraw-Hill, 511 pp.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperatures. Geophys. Res. Lett., 23, 665668.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations associated with the North Atlantic Oscillation. Climatic Change, 36, 301326.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, M. Visbeck, and G. Ottersen, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, doi:10.1029/2008GL036435.

    • Search Google Scholar
    • Export Citation
  • Latif, M.,M. Collins, H. Pohlmann, and N. Keenlyside, 2006: A review of predictability studies of Atlantic sector climate on decadal time scales. J. Climate, 19, 59715987.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to the low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and E. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995.

  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Lo, T.-T., and H.-H. Hsu, 2008: The early 1950s regime shift in temperature in Taiwan and East Asia. Climate Dyn., 31, 449461.

  • Lo, T.-T., and H.-H. Hsu, 2010: Change in the dominant decadal patterns and the late 1980s abrupt warming in the extratropical Northern Hemisphere. Atmos. Sci. Lett., 11, 210215, doi:10.1002/asl.275.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7, 523.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., J. F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, and J. Li, 2005: The CCCma third generation atmospheric general circulation model. CCCma Internal Rep., 25 pp.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., 2011: A shift in western tropical Pacific sea level trends during the 1990s. J. Climate, 24, 41264138.

  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686.

  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 9941013.

  • Namias, J., 1969: Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960s. Mon. Wea. Rev., 97, 173192.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375383.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. M. Adams, and N. A. Bond, 1999: Decadal variability of the Aleutian low and its relation to high-latitude circulation. J. Climate, 12, 15421548.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., E. Brun, V. Mauvais, and H. Douville, 2013: How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett., 40, 183188, doi:10.1029/2012GL054083.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. Oort, 1992: The Physics of Climate. American Institute of Physics, 520 pp.

  • Power, S. B., and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., and J. E. Overland, 2005: Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES J. Mar. Sci., 62, 328332.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Swanson, K. L., and A. A. Tsonis, 2009: Has the climate recently shifted? Geophys. Res. Lett., 36, L06711, doi:10.1029/2008GL037022.

  • Swanson, K. L., G. Sugihara, and A. A. Tsonis, 2009: Long-term natural variability and 20th century climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12016 130.

    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., M. Honda, and K. Takeuchi, 1996: The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian low. J. Meteor. Soc. Japan, 74, 579584.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Teng, Q., J. C. Fyfe, and A. H. Monahan, 2007: Northern Hemisphere circulation regimes: Observed, simulated and predicted. Climate Dyn., 28, 867879.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Trenberth, K. E., G. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., L. A. Raa, H. A. Dijkstra, and S. Y. Philip, 2009: Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci., 5, 293301.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and M. L. Blackmon, 1983: Observations of low-frequency atmospheric variability. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 55–94.

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267258.

  • Wang, X. L., H. Wan, and V. R. Swail, 2006: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J. Climate, 19, 896915.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12, 494510.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

  • Yu, B., and H. Lin, 2012: Tropical/extratropical forcing on wintertime variability of the extratropical temperature and circulation. Climate Dyn., 40, 1183–1200, doi:10.1007/s00382-012-1367-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 299 150 64
PDF Downloads 137 48 2