• Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , M. Botzet, , and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773, doi:10.1034/j.1600-0870.1996.00004.x.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , M. Esch, , N. Keenlyside, , L. Kornblueh, , J.-J. Luo, , and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 19171920, doi:10.1029/GL017i011p01917.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuickSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2002: Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate, 15, 26782689, doi:10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , G. A. Vecchi, , A. J. Rosati, , and T. L. Delworth, 2012: Biases in the Atlantic ITCZ in seasonal–interannual variations for a coarse- and a high-resolution coupled climate model. J. Climate, 25, 54945511, doi:10.1175/JCLI-D-11-00360.1.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , G. A. Vecchi, , A. J. Rosati, , and T. L. Delworth, 2013: Response to CO2 doubling of the Atlantic hurricane main development region in a high-resolution climate model. J. Climate, 26, 43224334, doi:10.1175/JCLI-D-12-00110.1.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2004: Relevance of soil moisture for seasonal atmospheric predictions: Is it an initial value problem? Climate Dyn., 22, 429446, doi:10.1007/s00382-003-0386-5.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , J. P. Kossin, , and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, doi:10.1038/326483a0.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509, doi:10.1175/2007JCLI1571.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , and S. J. Camargo, 2011: A climatology of Arabian Sea cyclonic storms. J. Climate, 24, 140158, doi:10.1175/2010JCLI3611.1.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2010: Elements of MOM4P1. GFDL Ocean Group Tech. Rep. 6, NOAA/Geophysical Fluid Dynamics Laboratory, 377 pp. [Available online at http://data1.gfdl.noaa.gov/~arl/pubrel/o/old/doc/mom4p1_guide.pdf.]

  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228, doi:10.1175/2008JCLI1921.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., , J. F. B. Mitchell, , and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247257, doi:10.1007/BF00198619.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, doi:10.1175/JCLI-D-11-00050.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, doi:10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , J. Done, , C. Bruyere, , C. Cooper, , and A. Suzuki-Parker, 2010: Model investigations of the effects of climate variability and change on future Gulf of Mexico tropical cyclone activity. 2010 Offshore Technology Conf., Houston, TX, OTC, 20690. [Available online at http://www.netl.doe.gov/kmd/RPSEA_Project_Outreach/07121-DW1801_OTC-20690-MS.pdf.]

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , J. B. Halverson, , and E. J. Zipser, 2008: Influence of environmental moisture on TRMM-derived tropical cyclone precipitation over land and ocean. Geophys. Res. Lett., 35, L17806, doi:10.1029/2008GL034658.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: The influence of El Niño–Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Climate, 24, 721731, doi:10.1175/2010JCLI3705.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , R. E. Tuleya, , and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181020, doi:10.1126/science.279.5353.1018.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , R. E. Tuleya, , W. Shen, , and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468, doi:10.1175/1520-0442(2001)014<2458:IOCIWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., , L. Qi, , R. Fawcett, , and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, doi:10.1029/2007GL032983.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , G. D. Bell, , W. M. Gray, , and S. B. Goldenberg, 1998: The extremely active 1995 Atlantic hurricane season: Environmental conditions and verification of seasonal forecasts. Mon. Wea. Rev., 126, 11741193, doi:10.1175/1520-0493(1998)126<1174:TEAAHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., , A. R. Brown, , M. R. Bush, , G. M. Martin, , and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Mahendran, M., 1998: Cyclone intensity categories. Wea. Forecasting, 13, 878883, doi:10.1175/1520-0434(1998)013<0878:CIC>2.0.CO;2.

  • Mendelsohn, R., , K. Emanuel, , S. Chonabayashi, , and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, doi:10.1038/nclimate1357.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, doi:10.1175/2010JCLI3723.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1979: Possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Wea. Rev., 107, 12211224, doi:10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , J. Gratz, , C. W. Landsea, , D. Collins, , M. A. Saunders, , and R. Musulin, 2008: Normalized hurricane damages in the United States: 1990–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, doi:10.1175/BAMS-88-4-513.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., , and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , and H. L. Miller Jr., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167, doi:10.2151/sola.2009-042.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687, doi:10.1126/science.1164396.

  • Vecchi, G. A., , M. Zhao, , H. Wang, , G. Villarini, , A. Rosati, , A. Kumar, , I. M. Held, , and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , S. Fueglistaler, , I. M. Held, , T. R. Knutson, , and M. Zhao, 2013: Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 38773891, doi:10.1175/JCLI-D-12-00503.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2010: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, doi:10.1175/2010MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , M. Zhao, , and J. A. Smith, 2011: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238, doi:10.1175/2011JCLI3853.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K.-M. Lau, , and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., , M. Fiorino, , C. W. Landsea, , and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , J.-K. E. Schemm, , A. Kumar, , W. Wang, , L. Long, , M. Chelliah, , G. D. Bell, , and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500, doi:10.1175/2009JCLI2753.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, doi:10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , M. Sugi, , and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, doi:10.2151/jmsj.84.405.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late twenty-first century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, doi:10.1175/JAS-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 182 62
PDF Downloads 78 78 22

Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, and Department of Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, and Willis Research Network, London, United Kingdom
  • 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 3 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Global tropical cyclone (TC) activity is simulated by the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model, version 2.5 (CM2.5), which is a fully coupled global climate model with a horizontal resolution of about 50 km for the atmosphere and 25 km for the ocean. The present climate simulation shows a fairly realistic global TC frequency, seasonal cycle, and geographical distribution. The model has some notable biases in regional TC activity, including simulating too few TCs in the North Atlantic. The regional biases in TC activity are associated with simulation biases in the large-scale environment such as sea surface temperature, vertical wind shear, and vertical velocity. Despite these biases, the model simulates the large-scale variations of TC activity induced by El Niño–Southern Oscillation fairly realistically. The response of TC activity in the model to global warming is investigated by comparing the present climate with a CO2 doubling experiment. Globally, TC frequency decreases (−19%) while the intensity increases (+2.7%) in response to CO2 doubling, consistent with previous studies. The average TC lifetime decreases by −4.6%, while the TC size and rainfall increase by about 3% and 12%, respectively. These changes are generally reproduced across the different basins in terms of the sign of the change, although the percent changes vary from basin to basin and within individual basins. For the Atlantic basin, although there is an overall reduction in frequency from CO2 doubling, the warmed climate exhibits increased interannual hurricane frequency variability so that the simulated Atlantic TC activity is enhanced more during unusually warm years in the CO2-warmed climate relative to that in unusually warm years in the control climate.

Current affiliation: Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, South Korea.

Corresponding author address: Hyeong-Seog Kim, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: hyeong-seog.kim@noaa.gov

Abstract

Global tropical cyclone (TC) activity is simulated by the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model, version 2.5 (CM2.5), which is a fully coupled global climate model with a horizontal resolution of about 50 km for the atmosphere and 25 km for the ocean. The present climate simulation shows a fairly realistic global TC frequency, seasonal cycle, and geographical distribution. The model has some notable biases in regional TC activity, including simulating too few TCs in the North Atlantic. The regional biases in TC activity are associated with simulation biases in the large-scale environment such as sea surface temperature, vertical wind shear, and vertical velocity. Despite these biases, the model simulates the large-scale variations of TC activity induced by El Niño–Southern Oscillation fairly realistically. The response of TC activity in the model to global warming is investigated by comparing the present climate with a CO2 doubling experiment. Globally, TC frequency decreases (−19%) while the intensity increases (+2.7%) in response to CO2 doubling, consistent with previous studies. The average TC lifetime decreases by −4.6%, while the TC size and rainfall increase by about 3% and 12%, respectively. These changes are generally reproduced across the different basins in terms of the sign of the change, although the percent changes vary from basin to basin and within individual basins. For the Atlantic basin, although there is an overall reduction in frequency from CO2 doubling, the warmed climate exhibits increased interannual hurricane frequency variability so that the simulated Atlantic TC activity is enhanced more during unusually warm years in the CO2-warmed climate relative to that in unusually warm years in the control climate.

Current affiliation: Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, South Korea.

Corresponding author address: Hyeong-Seog Kim, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: hyeong-seog.kim@noaa.gov
Save