• Ballester, J., , F. Giorgi, , and X. Rodo, 2010: Changes in European temperature extremes can be predicted from changes in PDF central statistics: A letter. Climatic Change, 98, 277284, doi:10.1007/s10584-009-9758-0.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , J. Mahfouf, , S. Bélair, , and G. Deblonde, 2007: A land data assimilation system for soil moisture and temperature: An information content study. J. Hydrometeor., 8, 12251242, doi:10.1175/2007JHM819.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112, D10108, doi:10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and P. Viterbo, 2005: Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40. J. Geophys. Res.,110, D14108, doi:10.1029/2004JD005702.

  • Betts, A. K., , B. Helliker, , and J. Berry, 2004: Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. J. Geophys. Res.,109, D18103, doi:10.1029/2003JD004420.

    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Évapotranspiration réelle et potentielle: Signification climatique. Proc. IASH General Assembly, Berkeley, CA, International Association of Science and Hydrology, 134–142.

  • Bouttier, F., , J. Mahfouf, , and J. Noilhan, 1993a: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part I: Sensitivity and calibration studies. J. Appl. Meteor., 32, 13351351, doi:10.1175/1520-0450(1993)032<1335:SAOSMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., , J. Mahfouf, , and J. Noilhan, 1993b: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II: Implementation in a mesoscale model. J. Appl. Meteor., 32, 13521364, doi:10.1175/1520-0450(1993)032<1352:SAOSMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., , L. Alexander, , and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Conil, S., , H. Douville, , and S. Tyteca, 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, doi:10.1007/s00382-006-0172-2.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , J. S. Pal, , R. J. Trapp, , and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, doi:10.1073/pnas.0506042102.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor., 4, 599610, doi:10.1175/1525-7541(2003)004<0599:TROTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., , and A. Porporato, 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101, 88488851, doi:10.1073/pnas.0401428101.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., , and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, Eds., 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp. [Available online at http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf.]

  • Findell, K. L., , and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , P. Gentine, , B. R. Lintner, , and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., , and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935, doi:10.1007/s00382-008-0473-8.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., , S. I. Seneviratne, , D. Lüthi, , and C. Schär, 2007: The contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , D. Entekhabi, , and J. Polcher, 2010: Spectral behaviour of a coupled land-surface and boundary-layer system. Bound.-Layer Meteor., 134, 157180, doi:10.1007/s10546-009-9433-z.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , D. Entekhabi, , and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, doi:10.1175/2011JHM1261.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , A. A. M. Holtslag, , F. D’Andrea, , and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, G. M., and Coauthors, 2005: Change in mean temperature as a predictor of extreme temperature change in the Asia–Pacific region. Int. J. Climatol., 25, 13011330, doi:10.1002/joc.1194.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , P. Brockhaus, , C. S. Bretherton, , and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Jaeger, E. B., , and S. I. Seneviratne, 2011: Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dyn., 36, 19191939, doi:10.1007/s00382-010-0780-8.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , M. J. Suarez, , and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, doi:10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , P. A. Dirmeyer, , A. N. Hahmann, , R. Ijpelaar, , L. Tyahla, , P. Cox, , and M. J. Suarez, 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3, 363375, doi:10.1175/1525-7541(2002)003<0363:CTDOLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Krakauer, N. Y., , B. I. Cook, , and M. J. Puma, 2010: Contribution of soil moisture feedback to hydroclimatic variability. Hydrol. Earth Syst. Sci., 14, 505520, doi:10.5194/hess-14-505-2010.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., , P. Gentine, , K. L. Findell, , F. D’Andrea, , A. H. Sobel, , and G. D. Salvucci, 2013: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 23792389, doi:10.1175/JCLI-D-11-00561.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., , and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, doi:10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., , B. R. Lintner, , J. Kim, , H. Lee, , J. D. Neelin, , and D. E. Waliser, 2013: Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys. Res. Lett., 40, 37103717, doi:10.1002/grl.50688.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30, 15341547, doi:10.1175/1520-0450(1991)030<1534:AOSMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milly, P., and Coauthors, 2014: An enhanced model of land water and energy for global hydrologic and earth-system studies. J. Hydrometeor., 15, 17391761, doi:10.1175/JHM-D-13-0162.1.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., , M. J. vanden Berg, , A. J. Teuling, , and R. A. M. deJeu, 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., , and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , B. R. Lintner, , B. Tian, , Q. Li, , L. Zhang, , P. K. Patra, , M. T. Chahine, , and S. N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophys. Res. Lett., 37, L05804, doi:10.1029/2009GL041726.

    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., , and S. I. Seneviratne, 2010: Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J. Climate, 23, 39183932, doi:10.1175/2010JCLI3366.1.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., , K. C. Mo, , and J. Nogués-Paegle, 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124, 345361, doi:10.1175/1520-0493(1996)124<0345:DOSPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., , and E. A. B. Eltahir, 2003: A feedback mechanism between soil-moisture distribution and storm tracks. Quart. J. Roy. Meteor. Soc., 129, 22792297, doi:10.1256/qj.01.201.

    • Search Google Scholar
    • Export Citation
  • Reale, O., , and P. Dirmeyer, 2002: Modeling the effect of land surface evaporation variability on precipitation variability. Part I: General response. J. Hydrometeor., 3, 433450, doi:10.1175/1525-7541(2002)003<0433:MTEOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhines, A., , and P. Huybers, 2013: Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546, doi:10.1073/pnas.1218748110.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., , and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , D. Lüthi, , M. Litschi, , and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , T. Corti, , E. L. Davin, , M. Hirschi, , E. B. Jaeger, , I. Lehner, , B. Orlowsky, , and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Simolo, C., , M. Brunetti, , M. Maugeri, , and T. Nanni, 2011: Evolution of extreme temperatures in a warming climate. Geophys. Res. Lett., 38, L16701, doi:10.1029/2011GL048437.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., , S. I. Seneviratne, , C. Williams, , and P. A. Troch, 2006: Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett., 33, L23403, doi:10.1029/2006GL028178.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, doi:10.1002/qj.699.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 174 64
PDF Downloads 146 146 46

Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution

View More View Less
  • 1 * Rutgers, The State University of New Jersey, New Brunswick, and Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 2 Rutgers, The State University of New Jersey, New Brunswick, New Jersey
  • 3 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 4 Princeton University, Princeton, New Jersey
  • 5 ** Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 6 Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

Understanding how different physical processes can shape the probability distribution function (PDF) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture–atmosphere interactions to surface temperature PDFs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back onto the near-surface climate—in particular, temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moisture dynamics enhance both temperature mean and variance over regional “hotspots” of land–atmosphere coupling. Moreover, higher-order distribution moments, such as skewness and kurtosis, are also significantly impacted, suggesting an asymmetric impact on the positive and negative extremes of the temperature PDF. Such changes are interpreted in the context of altered distributions of the surface turbulent and radiative fluxes. That the moments of the temperature distribution may respond differentially to soil moisture dynamics underscores the importance of analyzing moments beyond the mean and variance to characterize fully the interplay of soil moisture and near-surface temperature. In addition, it is shown that soil moisture dynamics impacts daily temperature variability at different time scales over different regions in the model.

Current affiliation: International Research for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York.

Corresponding author address: Alexis Berg, International Research for Climate and Society (IRI), The Earth Institute at Columbia University, 61 Rt. 9W, Palisades, NY 10964. E-mail: aberg@iri.columbia.edu

Abstract

Understanding how different physical processes can shape the probability distribution function (PDF) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture–atmosphere interactions to surface temperature PDFs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back onto the near-surface climate—in particular, temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moisture dynamics enhance both temperature mean and variance over regional “hotspots” of land–atmosphere coupling. Moreover, higher-order distribution moments, such as skewness and kurtosis, are also significantly impacted, suggesting an asymmetric impact on the positive and negative extremes of the temperature PDF. Such changes are interpreted in the context of altered distributions of the surface turbulent and radiative fluxes. That the moments of the temperature distribution may respond differentially to soil moisture dynamics underscores the importance of analyzing moments beyond the mean and variance to characterize fully the interplay of soil moisture and near-surface temperature. In addition, it is shown that soil moisture dynamics impacts daily temperature variability at different time scales over different regions in the model.

Current affiliation: International Research for Climate and Society (IRI), The Earth Institute at Columbia University, Palisades, New York.

Corresponding author address: Alexis Berg, International Research for Climate and Society (IRI), The Earth Institute at Columbia University, 61 Rt. 9W, Palisades, NY 10964. E-mail: aberg@iri.columbia.edu
Save