• Bell, G. D., , and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612, doi:10.1175/JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. Hodges, , M. Esch, , N. Keenlyside, , L. Kornblueh, , J. Luo, , and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539–561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., , M. Ting, , and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 15151529, doi:10.1007/s00382-012-1536-4.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., , J. Li, , M. Dubey, , M. Wang, , and G. Lesins, 2011: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys. Discuss.,11, 22 893–22 907, doi:10.5194/acpd-11-22893-2011.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., , and T. E. LaRow, 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean–atmosphere model. Mon. Wea. Rev., 128, 689708, doi:10.1175/1520-0493(2000)128<0689:SPUARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colbert, A., , and B. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, doi:10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2006: Evidence in support of the climate change—Atlantic hurricane hypothesis. Geophy. Res. Lett.,33, L16705, doi:10.1029/2006GL026869.

  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219–12 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 27192733, doi:10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and L. Cid-Serrano, 2006: Projecting the risk of future climate shifts. Int. J. Climatol., 26, 885895, doi:10.1002/joc.1293.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and L. Cid-Serrano, 2009: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174184, doi:10.1002/joc.1881.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , P. A. Stott, , and B. D. Santer, 2008: Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett., 35, L09707, doi:10.1029/2008GL033670.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , H. Bellenger, , M. Collins, , S. Ferrett, , W. Cai, , and A. Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, Vol. 58, International CLIVAR Project Office, Southampton, United Kingdom, 29–32.

  • Hurrell, J. W., and Coauthors, 2010: Decadal climate prediction: Opportunities and challenges. Proc. OceanObs ‘09: Sustained Ocean Observations and Information for Society, Venice, Italy, European Space Agency, 13 pp., doi:10.5270/OceanObs09.cwp.45.

  • Karl, T. R., , G. A. Meehl, , C. D. Miller, , S. J. Hassol, , A. M. Waple, , and W. L. Murray, Eds., 2008: Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. Climate Change Science Program Tech. Rep., 162 pp. [Available online at http://www.agci.org/dB/PDFs/Publications/07S1_USCCSP.pdf.]

  • Keenlyside, N., , M. Latif, , J. Jungclaus, , L. Kornblueh, , and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, doi:10.1126/science.288.5473.1984.

  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., 2009: The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J. Climate, 22, 16101625, doi:10.1175/2008JCLI2628.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , C. K. Folland, , and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495, doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , I. M. Held, , and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157–163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , and C. Spannagle, 2008: Multidecadal climate variability in observed and modeled surface temperatures. J. Climate, 21, 11041121, doi:10.1175/2007JCLI1874.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., 2013: The impact of SST bias correction on North Atlantic hurricane retrospective forecasts. Mon. Wea. Rev., 141, 490498, doi:10.1175/MWR-D-12-00152.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., , Y.-K. Lim, , D. W. Shin, , E. Chassignet, , and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206, doi:10.1175/2007JCLI2036.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., , L. Stefanova, , D.-W. Shin, , and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Mann, M., , and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate,25, 3237–3260, doi:10.1175/JCLI-D-11-00415.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T., , R. Reynolds, , T. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, doi:10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., , R. Stouffer, , and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, doi:10.1029/2012GL053046.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , Y. Kushnir, , R. Seager, , and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , Y. Kushnir, , R. Seager, , and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science,322, 687–689, doi:10.1126/science.1164396.

  • Villarini, G., , and G. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, doi:10.1175/JCLI-D-12-00441.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., , M. Fiorino, , C. Landsea, , and K. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , N. E. Huang, , J. M. Wallace, , B. Smoliak, , and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on Indian/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2009: A new method for attributing climate variations over the Atlantic Hurricane basin’s main development region. Geophys. Res. Lett., 36, L06701, doi:10.1029/2009GL037260.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. Held, , S.-J. Lin, , and G. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 6
PDF Downloads 7 7 2

Dynamical Simulations of North Atlantic Tropical Cyclone Activity Using Observed Low-Frequency SST Oscillation Imposed on CMIP5 Model RCP4.5 SST Projections

View More View Less
  • 1 Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

The effects on early and late twenty-first-century North Atlantic tropical cyclone statistics resulting from imposing the patterns of maximum/minimum phases of the observed Atlantic multidecadal oscillation (AMO) onto projected sea surface temperatures (SSTs) from two climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined using a 100-km resolution global atmospheric model. By imposing the observed maximum positive and negative phases of the AMO onto two CMIP5 SST projections from the representative concentration pathway (RCP) 4.5 scenario, this study places bounds on future North Atlantic tropical cyclone activity during the early (2020–39) and late (2080–99) twenty-first century. Averaging over both time periods and both AMO phases, the mean named tropical cyclones (NTCs) count increases by 35% when compared to simulations using observed SSTs from 1982 to 2009. The positive AMO simulations produce approximately a 68% increase in mean NTC count, while the negative AMO simulations are statistically indistinguishable from the mean NTC count determined from the 1995–2009 simulations—a period of observed positive AMO phase. Examination of the tropical cyclone track densities shows a statistically significant increase in the tracks along the East Coast of the United States in the future simulations compared to the models’ 1982–2009 climate simulations. The increase occurs regardless of AMO phase, although the negative phase produces higher track densities. The maximum wind speeds increase by 6%, in agreement with other climate change studies. Finally, the NTC-related precipitation is found to increase (approximately by 13%) compared to the 1982–2009 simulations.

Corresponding author address: Timothy E. LaRow, Florida State University, P.O. Box 3062741, Tallahassee, FL 32306-2741. E-mail: tlarow@fsu.edu

Abstract

The effects on early and late twenty-first-century North Atlantic tropical cyclone statistics resulting from imposing the patterns of maximum/minimum phases of the observed Atlantic multidecadal oscillation (AMO) onto projected sea surface temperatures (SSTs) from two climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined using a 100-km resolution global atmospheric model. By imposing the observed maximum positive and negative phases of the AMO onto two CMIP5 SST projections from the representative concentration pathway (RCP) 4.5 scenario, this study places bounds on future North Atlantic tropical cyclone activity during the early (2020–39) and late (2080–99) twenty-first century. Averaging over both time periods and both AMO phases, the mean named tropical cyclones (NTCs) count increases by 35% when compared to simulations using observed SSTs from 1982 to 2009. The positive AMO simulations produce approximately a 68% increase in mean NTC count, while the negative AMO simulations are statistically indistinguishable from the mean NTC count determined from the 1995–2009 simulations—a period of observed positive AMO phase. Examination of the tropical cyclone track densities shows a statistically significant increase in the tracks along the East Coast of the United States in the future simulations compared to the models’ 1982–2009 climate simulations. The increase occurs regardless of AMO phase, although the negative phase produces higher track densities. The maximum wind speeds increase by 6%, in agreement with other climate change studies. Finally, the NTC-related precipitation is found to increase (approximately by 13%) compared to the 1982–2009 simulations.

Corresponding author address: Timothy E. LaRow, Florida State University, P.O. Box 3062741, Tallahassee, FL 32306-2741. E-mail: tlarow@fsu.edu
Save