• Bader, D., , C. Covey, , W. Gutowski, , I. Held, , K. Kunkel, , R. Miller, , R. Tokmakian, , and M. Zhang, 2008: Climate models: An assessment of strengths and limitations. U.S. Department of Energy Publications Paper 8, 137 pp.

  • Bedka, S., , R. Knuteson, , H. Revercomb, , D. Tobin, , and D. Turner, 2010: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 through August 2008. J. Geophys. Res., 115, D17310, doi:10.1029/2009JD013139.

    • Search Google Scholar
    • Export Citation
  • Binswanger, H. P., , S. R. Khandker, , and M. R. Rosenzweig, 1993: How infrastructure and financial institutions affect agricultural output and investment in India. J. Dev. Econ., 41, 337366, doi:10.1016/0304-3878(93)90062-R.

    • Search Google Scholar
    • Export Citation
  • Brenkert, A. L., , and E. L. Malone, 2005: Modeling vulnerability and resilience to climate change: A case study of India and Indian states. Climatic Change,72, 57–102, doi:10.1007/s10584-005-5930-3.

  • Chahine, M. T., , T. Pagano, , and H. Aumann, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , and W. F. Krajewski, 1999: Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor., 38, 15191525, doi:10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2014: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • De Sherbinin, A., , A. Schiller, , and A. Pulsipher, 2007: The vulnerability of global cities to climate hazards. Environ. Urban., 19, 3964, doi:10.1177/0956247807076725.

    • Search Google Scholar
    • Export Citation
  • Dore, M. H. I., 2005: Climate change and changes in global precipitation patterns: What do we know? Environ. Int., 31, 11671181, doi:10.1016/j.envint.2005.03.004.

    • Search Google Scholar
    • Export Citation
  • EEA, 2012: Vulnerability and adaptation to climate change in Europe. European Environment Agency Tech. Rep. 7, 84 pp.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and Coauthors, 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Planets, 118, 23232337, doi:10.1002/2013JE004402.

    • Search Google Scholar
    • Export Citation
  • Hirschboeck, K. K., 1988: Climate and floods. National water summary 1988-89, R. W. Paulson et al., Eds., USGS Water Supply Paper 2375, 67–88.

  • Huang, Z., , W.-B. Li, , and J. Liang, 2013: Application of precipitable water vapor from ground based GPS data to analysis of precipitation weather process. J. Meteor. Environ., 29, 31–36.

  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 1–32.

  • Jakubicka, T., , F. Vos, , R. Phalkey, , M. Marx, , and D. Guha-Sapir, 2010 Health impacts of floods in Europe: Data gaps and information needs from a spatial perspective. Université Catholique de Louvain Institut de Recherche Santé et Société Rep., 44 pp.

  • Karl, T. R., , and K. E. Trenberth, 2003: Modern global climate change. Science, 302, 17191723, doi:10.1126/science.1090228.

  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens.,41, 184–194, doi:10.1109/TGRS.2002.808331.

  • Kelemen, A., , W. Munch, , H. Poleman, , Z. Gakova, , L. Dijkstra, , and B. Torighelli, 2009: Regions 2020: The climate change challenge for European regions. European Commission Rep., 27 pp.

  • Kousky, C., , and M. Walls, 2014: Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol. Econ., 104, 119128, doi:10.1016/j.ecolecon.2014.05.001.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , T. R. Karl, , D. R. Easterling, , K. Redmond, , J. Young, , X. Yin, , and P. Hennon, 2013: Probable maximum precipitation (PMP) and climate change. Geophys. Res. Lett., 40, 14021408, doi:10.1002/grl.50334.

    • Search Google Scholar
    • Export Citation
  • Leroy, S., , J. Anderson, , J. Dykema, , and R. Goody, 2008: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875, doi:10.1175/2007JCLI2061.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and J. Deng, 2013: Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Adv. Meteor.,2013, 793957, doi:10.1155/2013/793957.

  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Ohring, G., , and A. Gruber, 1982: Satellite radiation observations and climate theory. Advances in Geophysics, Vol. 25, Academic Press, 237–304.

  • Ohring, G., , B. Wielicki, , R. Spencer, , B. Emery, , and R. Datla, 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 13031313, doi:10.1175/BAMS-86-9-1303.

    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, doi:10.1038/nature09364.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., , and M. W. Downton, 2000: Precipitation and damaging floods: Trends in the United States, 1932–97. J. Climate, 13,36253637, doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roman, J. A., , R. O. Knuteson, , S. A. Ackerman, , D. C. Tobin, , and H. E. Revercomb, 2012: Assessment of regional global climate model water vapor bias and trends using precipitable water vapor (PWV) observations from a network of global positioning satellite (GPS) receivers in the U.S. Great Plains and Midwest. J. Climate, 25, 54715493, doi:10.1175/JCLI-D-11-00570.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, doi:10.1175/JCLI3612.1.

    • Search Google Scholar
    • Export Citation
  • Schnitzler, J., , J. Benzler, , D. Altmann, , I. Muecke, , and G. Krause, 2007: Survey on the population’s needs and the public health response during floods in Germany 2002. J. Public Health Manage. Pract., 13, 461464, doi:10.1097/01.PHH.0000285197.23932.3e.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., , and J. P. Breidenbach, 2002: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeor., 3, 93111, doi:10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , D. L. Jackson, , V. Ramaswamy, , D. Schwarzkopf, , and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. Tignor, , and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Song, D.-S., , and D. A. Grejner-Brzezinska, 2009: Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space, 61, 11171125, doi:10.1186/BF03352964.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., , S. Solomon, , A. Dai, , and R. W. Portmann, 2006: How often does it rain? J. Climate,19, 916–934, doi:10.1175/JCLI3672.1.

  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , E. J. Fetzer, , B. H. Kahn, , J. Teixeira, , E. Manning, , and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114134, doi:10.1029/2012JD018607.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen, , and D. B. Parsons, 2003: the changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Weatherhead, E., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 14917 161, doi:10.1029/98JD00995.

    • Search Google Scholar
    • Export Citation
  • Wei, X, ., C. Declan, , L. Erdaa, , X. Yinlong, , J. Hui, , J. Jinhe, , H. Ian, , and L. Yan, 2009: Future cereal production in China: the interaction of climate change, water availability and socio-economic scenarios. Global Environ. Change, 19, 3444, doi:10.1016/j.gloenvcha.2008.10.006.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , K. C. Vermeesch, , L. D. Oman, , and E. C. Weatherhead, 2011: The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor. J. Geophys. Res., 116, D21118, doi:10.1029/2011JD016610.

    • Search Google Scholar
    • Export Citation
  • Wibig, J., 1999: Precipitation in Europe in relation to circulation patterns at the 500 hPa level. Int. J. Climatol., 19, 253269, doi:10.1002/(SICI)1097-0088(19990315)19:3<253::AID-JOC366>3.0.CO;2-0.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc.,94, 1519–1539 doi:10.1175/BAMS-D-12-00149.1.

  • Zhang, K., , B. C. Douglas, , and S. P. Leatherman, 2000: Twentieth-century storm activity along the U.S. East Coast. J. Climate,13, 748–1761, doi:10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 6
PDF Downloads 15 15 6

Time-to-Detect Trends in Precipitable Water Vapor with Varying Measurement Error

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
  • 2 Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • 3 Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

This study determined the theoretical time-to-detect (TTD) global climate model (GCM) precipitable water vapor (PWV) 100-yr trends when realistic measurement errors are considered. Global trends ranged from 0.055 to 0.072 mm yr−1 and varied minimally from season to season. Global TTDs with a 0% measurement error ranged from 3.0 to 4.8 yr, while a 5% measurement error increased the TTD by almost 6 times, ranging from 17.6 to 22.0 yr. Zonal trends were highest near the equator; however, zonal TTDs were nearly independent of latitude when 5% measurement error was included. Zonal TTDs are significantly reduced when the trends are analyzed by season. Regional trends (15° × 30°) show TTDs close to those in the 15° latitude zones (15° × 360°). Detailed case study analysis of four selected regions with high population density—eastern United States, Europe, China, and India—indicated that trend analysis on regional spatial scales may provide the most timely information regarding highly populated regions when comparing detection time scales to global and zonal analyses.

Corresponding author address: Jacola Roman, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: roman2@wisc.edu

Abstract

This study determined the theoretical time-to-detect (TTD) global climate model (GCM) precipitable water vapor (PWV) 100-yr trends when realistic measurement errors are considered. Global trends ranged from 0.055 to 0.072 mm yr−1 and varied minimally from season to season. Global TTDs with a 0% measurement error ranged from 3.0 to 4.8 yr, while a 5% measurement error increased the TTD by almost 6 times, ranging from 17.6 to 22.0 yr. Zonal trends were highest near the equator; however, zonal TTDs were nearly independent of latitude when 5% measurement error was included. Zonal TTDs are significantly reduced when the trends are analyzed by season. Regional trends (15° × 30°) show TTDs close to those in the 15° latitude zones (15° × 360°). Detailed case study analysis of four selected regions with high population density—eastern United States, Europe, China, and India—indicated that trend analysis on regional spatial scales may provide the most timely information regarding highly populated regions when comparing detection time scales to global and zonal analyses.

Corresponding author address: Jacola Roman, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: roman2@wisc.edu
Save