• Ambaum, M. H., , B. J. Hoskins, , and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , H. Kim, , and B.-M. Kim, 2013: Impact of freshwater discharge from the Greenland Ice Sheet on North Atlantic climate variability. Theor. Appl. Climatol., 112,2943, doi:10.1007/s00704-012-0699-6.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2001: A personal perspective on the early years of general circulation modeling at UCLA. Int. Geophys., 70, 165, doi:10.1016/S0074-6142(00)80049-2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2004: Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys. Res. Lett., 31, L08306, doi:10.1029/2003GL019334.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., , S. Levitus, , J. Antonov, , and S.-A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168, doi:10.1016/S0079-6611(98)00015-9.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., , and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, doi:10.1146/annurev-marine-120308-081105.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., , D. Menemenlis, , and C. R. Mechoso, 2008: Impact of ecco ocean-state estimates on the initialization of seasonal climate forecasts. J. Climate, 21, 19291947, doi:10.1175/2007JCLI1574.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., , C. Wilson, , D. Blankenship, , and B. Tapley, 2009: Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2, 859862, doi:10.1038/ngeo694.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2008: Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño–Southern Oscillation. J. Climate, 21, 910922, doi:10.1175/2007JCLI1657.1.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., 2014: The evidence shows sea levels are rising: Let’s not be caught out. Ecos, 2014 (193). [Available online at http://www.ecosmagazine.com/paper/EC14052.htm.]

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The Era-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Tomas, , and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , J. Meincke, , S.-A. Malmberg, , and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103151, doi:10.1016/0079-6611(88)90049-3.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , J. Lazier, , J. Meincke, , P. Rhines, , and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241295, doi:10.1016/S0079-6611(97)00002-5.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., , and C. Franzke, 2006: Are the North Atlantic Oscillation and the northern annular mode distinguishable? J. Atmos. Sci., 63, 29152930, doi:10.1175/JAS3798.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , N. Sennéchael, , and P. Cauchy, 2014: Observed atmospheric response to cold season sea ice variability in the Arctic. J. Climate, 27, 12431254, doi:10.1175/JCLI-D-13-00189.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., , W. Hurlin, , and S. M. Griffies, 2006: Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Modell., 12, 416435, doi:10.1016/j.ocemod.2005.08.003.

    • Search Google Scholar
    • Export Citation
  • Held, I., , and I. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44, 35763586, doi:10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., 2008: Reconsideration of the true versus apparent Arctic Oscillation. J. Climate, 21, 20472062, doi:10.1175/2007JCLI2167.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., , and N. Serra, 2014: Causes of decadal changes of the freshwater content in the Arctic Ocean. J. Climate, 27, 34613475, doi:10.1175/JCLI-D-13-00389.1.

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., , G. C. Boezio, , C. R. Mechoso, , and A. Arakawa, 2009: Parameterization of PBL processes in an atmospheric general circulation model: Description and preliminary assessment. Mon. Wea. Rev., 137, 10611082, doi:10.1175/2008MWR2464.1.

    • Search Google Scholar
    • Export Citation
  • Kopp, R., , J. Mitrovica, , S. Griffies, , J. Yin, , C. Hay, , and R. Stouffer, 2010: The impact of Greenland melt on regional sea level: A preliminary comparison of dynamic and static equilibrium effects. Climatic Change Lett., 103, 619625, doi:10.1007/s10584-010-9935-1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , G. Danabasoglu, , S. C. Doney, , and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, doi:10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637, doi:10.1126/science.266.5185.634.

    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., , J. Dengg, , C. W. Böning, , and A. Biastoch, 2010: Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic meridional overturning circulation. J. Climate, 23, 42434254, doi:10.1175/2010JCLI3341.1.

    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., , S. J. Marsland, , J. A. Church, , S. M. Griffies, , and D. Stammer, 2012: Rapid barotropic sea level rise from ice sheet melting. J. Geophys. Res., 117, C06003, doi:10.1029/2011JC007733.

    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 12861289, doi:10.1126/science.1130776.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., , C. R. Mechoso, , Y. Xue, , H. Xiao, , J. D. Neelin, , and X. Ji, 2013: On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean–atmosphere–land system. J. Climate, 26, 90069025, doi:10.1175/JCLI-D-12-00819.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., , D. Desbruyères, , J. Bamber, , B. de Cuevas, , A. Coward, , and Y. Aksenov, 2010: Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci., 6, 749760, doi:10.5194/os-6-749-2010.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , J. D. Neelin, , and J.-Y. Yu, 2003: Testing simple models of ENSO. J. Atmos. Sci., 60, 305318, doi:10.1175/1520-0469(2003)060<0305:TSMOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925, doi:10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., , C. Deser, , A. Hu, , A. Timmermann, , and S.-P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 14241445, doi:10.1175/2008JCLI2511.1.

    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., , and D. D. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981, doi:10.1002/qj.49712454714.

    • Search Google Scholar
    • Export Citation
  • Park, S., , M. A. Alexander, , and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19, 62436261, doi:10.1175/JCLI3957.1.

    • Search Google Scholar
    • Export Citation
  • Peng, S., , W. A. Robinson, , and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, doi:10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perovich, D., , W. Meier, , M. Tschudi, , S. Gerland, , and J. Richter-Menge, 2013: Sea ice cover [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 94,S126S127.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , M. Reyers, , and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337354, doi:10.1007/s00382-010-0770-x.

    • Search Google Scholar
    • Export Citation
  • Polkova, I., , A. Köhl, , and D. Stammer, 2014: Impact of initialization procedures on the predictive skill of a coupled ocean–atmosphere model. Climate Dyn., 42, 3151–3169, doi:10.1007/s00382-013-1969-4.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Oceanic response to surface loading effects neglected in volume-conserving models. J. Phys. Oceanogr., 36, 426434, doi:10.1175/JPO2843.1.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., , D. Cayan, , and Y. Kushnir, 1997: Decadal variability of hydrography in the upper northern North Atlantic in 1948–1990. J. Geophys. Res., 102, 85058531, doi:10.1029/96JC03943.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , J. L. Bamber, , M. R. van den Broeke, , C. Davis, , Y. Li, , W. J. van de Berg, , and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1, 106110, doi:10.1038/ngeo102.

    • Search Google Scholar
    • Export Citation
  • Rogers, J., , and M. McHugh, 2002: On the separability of the North Atlantic Oscillation and Arctic Oscillation. Climate Dyn., 19, 599608, doi:10.1007/s00382-002-0247-7.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schrama, E. J., , and B. Wouters, 2011: Revisiting Greenland Ice Sheet mass loss observed by GRACE. J. Geophys. Res.,116, B02407, doi:10.1029/2009JB006847.

  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108, 503534, doi:10.1002/qj.49710845703.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , J. Wallace, , and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 2008: Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res., 113, C06022, doi:10.1029/2006JC004079.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , N. Agarwal, , P. Herrmann, , A. Köhl, , and C. Mechoso, 2011: Response of a coupled ocean–atmosphere model to Greenland ice melting. Surv. Geophys., 32, 621642, doi:10.1007/s10712-011-9142-2.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Stouffer, R., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , A. Arakawa, , and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 22242243, doi:10.1175/1520-0493(1983)111<2224:TPOTPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sundby, S., , and K. Drinkwater, 2007: On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog. Oceanogr., 73, 190202, doi:10.1016/j.pocean.2007.02.002.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., and Coauthors, 2013: Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Climate Dyn., 41, 695720, doi:10.1007/s00382-012-1479-9.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, doi:10.1175/JCLI4283.1.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic Ice Sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., , and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, X., , Q. Wang, , D. Sidorenko, , S. Danilov, , J. Schröter, , and T. Jung, 2012: Long-term ocean simulations in FESOM: Evaluation and application in studying the impact of Greenland Ice Sheet melting. Ocean Dyn., 62, 14711486, doi:10.1007/s10236-012-0572-2.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., , M. E. Maltrud, , M. W. Hecht, , H. A. Dijkstra, , and M. A. Kliphuis, 2012: Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett., 39, L09606, doi:10.1029/2012GL051611.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , P. Sellers, , J. Kinter, , and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , and A. Arakawa, 2000: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. General Circulation Model Development: Past, Present, and Future: Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. Randall, Ed., Academic Press, 539–575.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 3
PDF Downloads 6 6 0

On the Early Response of the Climate System to a Meltwater Input from Greenland

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
  • 2 University of Hamburg, Hamburg, Germany
  • 3 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • 4 University of Hamburg, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The early response of the atmosphere–ocean system to meltwater runoff originating from the Greenland ice sheet is studied using a coupled atmosphere–ocean general circulation model (AOGCM). For this purpose, AOGCM ensemble simulations without and with associated ocean freshening around Greenland are compared. For freshwater perturbations initiated in northern winter, the mean response for the first three months shows the emergence of negative sea surface temperature (SST) anomalies in the Denmark Strait, in association with enhanced oceanic advection by the East Greenland Current. The response also shows negative SST anomalies in the North Atlantic associated with enhanced westerlies at the ocean surface. Additionally, the baroclinic atmospheric cyclonic circulation east of Greenland intensifies, and anticyclonic circulations with equivalent barotropic structures develop over western Europe and the North Pacific Ocean. Simulations by the atmospheric component of the AOGCM indicate that atmosphere–ocean interactions contribute significantly to enhance the response. The sensitivity of the coupled system response to the timing of freshwater perturbation is also studied. For freshwater perturbations initialized in northern summer, the response during the following winter is similar, but stronger in magnitude. In the Northern Hemisphere, the atmospheric response resembles the Arctic Oscillation (AO) mode of variability. The association between anomalies in the Denmark Strait SSTs and in the atmosphere east of Greenland is consistent with that observed during previous great salinity anomaly (GSA) events. The results obtained highlight the importance of atmosphere–ocean interaction in the early climate response to Greenland melting, the teleconnections with the North Pacific and the contribution of GSA events to North Atlantic Oscillation (NAO) variability.

Corresponding author address: Neeraj Agarwal, Max Planck Institute for Meteorology, 53 Bundestrasse, Hamburg, Germany 20146. E-mail: neeraj.agarwal@zmaw.de

Abstract

The early response of the atmosphere–ocean system to meltwater runoff originating from the Greenland ice sheet is studied using a coupled atmosphere–ocean general circulation model (AOGCM). For this purpose, AOGCM ensemble simulations without and with associated ocean freshening around Greenland are compared. For freshwater perturbations initiated in northern winter, the mean response for the first three months shows the emergence of negative sea surface temperature (SST) anomalies in the Denmark Strait, in association with enhanced oceanic advection by the East Greenland Current. The response also shows negative SST anomalies in the North Atlantic associated with enhanced westerlies at the ocean surface. Additionally, the baroclinic atmospheric cyclonic circulation east of Greenland intensifies, and anticyclonic circulations with equivalent barotropic structures develop over western Europe and the North Pacific Ocean. Simulations by the atmospheric component of the AOGCM indicate that atmosphere–ocean interactions contribute significantly to enhance the response. The sensitivity of the coupled system response to the timing of freshwater perturbation is also studied. For freshwater perturbations initialized in northern summer, the response during the following winter is similar, but stronger in magnitude. In the Northern Hemisphere, the atmospheric response resembles the Arctic Oscillation (AO) mode of variability. The association between anomalies in the Denmark Strait SSTs and in the atmosphere east of Greenland is consistent with that observed during previous great salinity anomaly (GSA) events. The results obtained highlight the importance of atmosphere–ocean interaction in the early climate response to Greenland melting, the teleconnections with the North Pacific and the contribution of GSA events to North Atlantic Oscillation (NAO) variability.

Corresponding author address: Neeraj Agarwal, Max Planck Institute for Meteorology, 53 Bundestrasse, Hamburg, Germany 20146. E-mail: neeraj.agarwal@zmaw.de
Save