Regional Characteristics of Extreme Rainfall Extracted from TRMM PR Measurements

Atsushi Hamada Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Atsushi Hamada in
Current site
Google Scholar
PubMed
Close
,
Yuki Murayama Ministry of Economy, Trade and Industry, Tokyo, Japan

Search for other papers by Yuki Murayama in
Current site
Google Scholar
PubMed
Close
, and
Yukari N. Takayabu Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characteristics and global distribution of regional extreme rainfall are presented using 12 yr of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements. By considering each rainfall event as a set of contiguous PR rainy pixels, characteristic values for each event are obtained. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile on a 2.5° × 2.5° horizontal-resolution grid.

The geographical distribution of extreme rainfall rates shows clear regional differences. The size and volumetric rainfall of extreme events also show clear regional differences. Extreme rainfall rates show good correlations with the corresponding rain-top heights and event sizes over oceans but marginal or no correlation over land. The time of maximum occurrence of extreme rainfall events tends to be during 0000–1200 LT over oceans, whereas it has a distinct afternoon peak over land. There are also clear seasonal differences in which the occurrence over land is largely coincident with insolation.

Regional extreme rainfall is classified by extreme rainfall rate (intensity) and the corresponding event size (extensity). Regions of “intense and extensive” extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of “intense but less extensive” extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of “extensive but less intense” extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones.

Corresponding author address: Atsushi Hamada, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: a-hamada@aori.u-tokyo.ac.jp

Abstract

Characteristics and global distribution of regional extreme rainfall are presented using 12 yr of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements. By considering each rainfall event as a set of contiguous PR rainy pixels, characteristic values for each event are obtained. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile on a 2.5° × 2.5° horizontal-resolution grid.

The geographical distribution of extreme rainfall rates shows clear regional differences. The size and volumetric rainfall of extreme events also show clear regional differences. Extreme rainfall rates show good correlations with the corresponding rain-top heights and event sizes over oceans but marginal or no correlation over land. The time of maximum occurrence of extreme rainfall events tends to be during 0000–1200 LT over oceans, whereas it has a distinct afternoon peak over land. There are also clear seasonal differences in which the occurrence over land is largely coincident with insolation.

Regional extreme rainfall is classified by extreme rainfall rate (intensity) and the corresponding event size (extensity). Regions of “intense and extensive” extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of “intense but less extensive” extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of “extensive but less intense” extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones.

Corresponding author address: Atsushi Hamada, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: a-hamada@aori.u-tokyo.ac.jp
Save
  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, doi:10.1029/2005JD006119.

    • Search Google Scholar
    • Export Citation
  • Ajayamohan, R. S., W. J. Merryfield, and V. V. Kharin, 2010: Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J. Climate, 23, 10041013, doi:10.1175/2009JCLI2918.1.

    • Search Google Scholar
    • Export Citation
  • Albright, M. D., E. E. Recker, R. J. Reed, and R. Dang, 1985: The diurnal variation of deep convection and inferred precipitation in the central tropical Pacific during January-February 1979. Mon. Wea. Rev., 113, 16631680, doi:10.1175/1520-0493(1985)113<1663:TDVODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, doi:10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394, doi:10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res., 118, 10 791 10 801, doi:10.1002/jgrd.50852.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., S. W. Nesbitt, S. A. Rutledge, W. A. Petersen, and S. Yuter, 2007: Radar characteristics of precipitation features in the EPIC and TEPPS regions of the east Pacific. Mon. Wea. Rev., 135, 15761595, doi:10.1175/MWR3340.1.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., A. Salahuddin, R. F. Adler, G. J. Huffman, G. Gu, and Y. Hong, 2007: Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J. Hydrometeor., 8, 678689, doi:10.1175/JHM601.1.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fu, R., B. Zhu, and R. E. Dickinson, 1999: How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? J. Climate, 12, 13061321, doi:10.1175/1520-0442(1999)012<1306:HDAALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Funatsu, B. M., C. Claud, and J.-P. Chaboureau, 2009: Comparison between the large-scale environments of moderate and intense precipitating systems in the Mediterranean region. Mon. Wea. Rev., 137, 39333959, doi:10.1175/2009MWR2922.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 31573171, doi:10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2014: A removal filter for suspicious extreme rainfall profiles in TRMM PR 2A25 version-7 data. J. Appl. Meteor. Climatol.,53, 1252–1271, doi:10.1175/JAMC-D-13-099.1.

  • Haylock, M. R., and Coauthors, 2006: Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate, 19, 14901512, doi:10.1175/JCLI3695.1.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, D. A. Short, and K. Nakamura, 2009: Regional characteristics of scale-based precipitation systems from ten years of TRMM PR data. J. Meteor. Soc. Japan, 87A, 353368, doi:10.2151/jmsj.87A.353.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., S. Shimizu, R. Oki, T. Iguchi, D. A. Short, and K. Nakamura, 2012: Incidence-angle dependency of TRMM PR rain estimates. J. Atmos. Oceanic Technol., 29, 192206, doi:10.1175/JTECH-D-11-00067.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Houze, R. A., Jr., K. L. Rasmussen, S. Medina, S. R. Brodzik, and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, doi:10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, M. Summers, and E. J. Zipser, 2010: Do the tallest convective cells over the tropical ocean have slow updrafts? Mon. Wea. Rev., 138, 16511672, doi:10.1175/2009MWR3030.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, M. Schwaller, W. Petersen, and J. Zhang, 2013: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar-based national mosaic QPE. J. Hydrometeor., 14, 661669, doi:10.1175/JHM-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., Y. P. Zhou, and H.-T. Wu, 2008: Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res., 113, D23113, doi:10.1029/2008JD009963.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, doi:10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., I. Bladé, G. N. Kiladis, L. M. V. Carvalho, G. B. Senay, D. Allured, S. Leroux, and C. Funk, 2012: Seasonality of African precipitation from 1996 to 2009. J. Climate, 25, 43044322, doi:10.1175/JCLI-D-11-00157.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, doi:10.1175/2010JHM1320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer, 2001: Onset and end of the rainy season in the Brazilian Amazon basin. J. Climate, 14, 833852, doi:10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679, doi:10.1175/1520-0450-39.5.666.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, doi:10.1175/2010JCLI3515.1.

    • Search Google Scholar
    • Export Citation
  • Nair, S., G. Srinivasan, and R. Nemani, 2009: Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J. Meteor. Soc. Japan, 87, 927939, doi:10.2151/jmsj.87.927.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM Precipitation Features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2012: A flash flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bull. Amer. Meteor. Soc., 93, 17131724, doi:10.1175/BAMS-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., S. L. Choi, M. D. Zuluaga, and R. A. Houze Jr., 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett., 40, 34573461, doi:10.1002/grl.50651.

    • Search Google Scholar
    • Export Citation
  • Richards, F., and P. Arkin, 1981: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev., 109, 10811093, doi:10.1175/1520-0493(1981)109<1081:OTRBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., 2013: Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the diurnal cycle. Mon. Wea. Rev., 141, 24512466, doi:10.1175/MWR-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Seiler, C., R. W. A. Hutjes, and P. Kabat, 2013: Climate variability and trends in Bolivia. J. Appl. Meteor. Climatol., 52, 130146, doi:10.1175/JAMC-D-12-0105.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, N. Utsumi, M. Kiguchi, and T. Oki, 2013: Evaluation of extreme rain estimates in the TRMM/PR standard product version 7 using high-temporal-resolution rain gauge datasets over Japan. SOLA, 9, 98101, doi:10.2151/sola.2013-022.

    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2010: Effect of TRMM orbit boost on radar reflectivity distributions. J. Atmos. Oceanic Technol., 27, 12471254, doi:10.1175/2010JTECHA1426.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, M. Steiner, and A. J. Miller, 1996: Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan storm of June 27, 1995. Water Resour. Res., 32, 30993113, doi:10.1029/96WR02107.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., G.-H. Ryu, H.-J. Song, and M.-L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 38733888, doi:10.1175/MWR-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and D. A. Santek, 1985: Measuring the global distribution of intense convection over land with passive microwave radiometery. J. Appl. Meteor., 24, 860864, doi:10.1175/1520-0477(1996)077<0305:ROFEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgenson, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43, 182197, doi:10.1175/1520-0469(1986)043<0182:ARSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and M. Kimoto, 2008: Diurnal march of rainfall simulated in a T106 AGCM and dependence on cumulus schemes. J. Meteor. Soc. Japan, 86A, 163173, doi:10.2151/jmsj.86A.163.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, A., and Coauthors, 2013: Improvement of high-resolution satellite rainfall product for typhoon Morakot (2009) over Taiwan. J. Hydrometeor., 14, 18591871, doi:10.1175/JHM-D-13-047.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, doi:10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 820 250 33
PDF Downloads 669 196 29