• Alessandri, A., , A. Borrelli, , S. Gualdi, , E. Scoccimarro, , and S. Masina, 2011: Tropical cyclone count forecasting using a dynamical seasonal prediction system: Sensitivity to improved ocean initialization. J. Climate, 24, 29632982, doi:10.1175/2010JCLI3585.1.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Bell, R., , J. Strachan, , P. L. Vidale, , K. Hodges, , and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 7966–7980, doi:10.1175/JCLI-D-12-00749.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , and I. M. Held, 2010: Model impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 19171920, doi:10.1029/GL017i011p01917.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. G. Barnston, , P. Klotzbach, , and C. W. Landsea, 2007a: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007b: Use of genesis potential index to diagnose ENSO effects upon tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, doi:10.1175/JCLI4203.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , A. G. Barnston, , and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, doi:10.1029/2007GC001861.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , M. Ting, , and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 15151529, doi:10.1007/s00382-012-1536-4.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , M. K. Tippett, , A. H. Sobel, , G. A. Vecchi, , and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model. J. Climate, doi:10.1175/JCLI-D-13-00505.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., , G. A. Vecchi, , and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate,26, 9462–9476, doi:10.1175/JCLI-D-13-00045.1.

  • Colbert, A. J., , and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, doi:10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., , B. J. Soden, , G. A. Vecchi, , and B. P. Kirtman, 2013: The impacts of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Climate, 26, 4088–4095, doi:10.1175/JCLI-D-12-00342.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, doi:10.1038/ngeo2201.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , G. A. Vecchi, , A. J. Rosati, , and T. L. Delworth, 2012: Biases in the Atlantic ITCZ in seasonal–interannual variations for a coarse- and a high-resolution coupled climate model. J. Climate, 25, 54945511, doi:10.1175/JCLI-D-11-00360.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , and T. H. Jagger, 2006: Prediction models for annual U.S. hurricane counts. J. Climate, 19, 29352952, doi:10.1175/JCLI3729.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , B. H. Bossak, , and X. F. Niu, 2001: Secular changes to the ENSO–U.S. hurricane relationship. Geophys. Res. Lett., 28, 41234126, doi:10.1029/2001GL013669.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and D. S. Nolan, 2004: Tropical cyclones and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming—Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , S. M. Griffies, , A. J. G. Nurser, , and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., , and J. B. Elsner, 2010: A consensus model for seasonal hurricane prediction. J. Climate, 23, 60906099, doi:10.1175/2010JCLI3686.1.

    • Search Google Scholar
    • Export Citation
  • Kam, J., , J. Sheffield, , X. Yuan, , and E. F. Wood, 2013: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007). J. Climate, 26, 30673086, doi:10.1175/JCLI-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, doi:10.1175/JCLI-D-13-00475.1, in press.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: Forecasting October–November Caribbean hurricane days. J. Geophys. Res., 116, D18117, doi:10.1029/2011JD016146.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., , and W. M. Gray, 2009: Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984–2008). Geophys. Res. Lett., 36, L09711, doi:10.1029/2009GL037580.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neuman, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , G. A. Vecchi, , and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , S.-P. Xie, , N.-C. Lau, , and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 7574–7579, doi:10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, doi:10.1175/BAMS-88-11-1767.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , S. J. Camargo, , and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , G. A. Vecchi, , L. Bengtsson, , and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, doi:10.1175/2009JCLI3034.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., 2013: The impact of SST bias correction on North Atlantic hurricane retrospective forecasts. Mon. Wea. Rev., 141, 490498, doi:10.1175/MWR-D-12-00152.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., , L. Stefanova, , D. W. Shin, , and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., , and G. A. Vecchi, 2010: Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn., 35, 299313, doi:10.1007/s00382-009-0562-3.

    • Search Google Scholar
    • Export Citation
  • Lin, N., , J. A. Smith, , G. Villarini, , T. P. Marchok, , and M. L. Baeck, 2010: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Wea. Forecasting, 25, 13421361, doi:10.1175/2010WAF2222349.1.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., , M. Alonso-Balmaseda, , S. Corti, , F. Molteni, , and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 23932409, doi:10.1007/s00382-012-1599-2.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , K. W. Dixon, , T. L. Delworth, , and W. J. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , W. E. Johns, , S. G. Yeager, , G. Danabasoglu, , T. L. Delworth, , and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 4335–4356, doi:10.1175/JCLI-D-12-00081.1.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., and Coauthors, 2014: Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J. Climate, 27, 6472–6496, doi:10.1175/JCLI-D-13-00476.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and B. Wang, 2010: Future change in North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change in western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, doi:10.1175/2010JCLI3723.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , T. Li, , and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749754, doi:10.1038/nclimate1890.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , P.-C. Hsu, , O. Arakawa, , and T. Li, 2014: Influences of model biases on projected future changes in tropical cyclone frequency of occurrence. J. Climate, 27, 2159–2181, doi:10.1175/JCLI-D-13-00436.1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., , J. Gratz, , C. W. Landsea, , D. Collins, , M. A. Saunders, , and R. Musulin, 2008: Normalized hurricane damages in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Scocimarro, E., , S. Gualdi, , G. Villarini, , G. A. Vecchi, , M. Zhao, , K. Walsh, , and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in a warmer climate and increased CO2. J. Climate, 27, 4642–4654, doi:10.1175/JCLI-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , N. J. Dunstone, , D. Fereday, , J. M. Murphy, , H. Pohlmann, , and A. A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , G. A. Vecchi, , and A. Rosati, 2008: Predictability of Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys. Res. Lett., 5, L02701, doi:10.1029/2007GL031966.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , S. J. Camargo, , and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., 2006: The termination of the 1997–98 El Niño. Part II: Mechanisms of atmospheric change. J. Climate, 19, 26472664, doi:10.1175/JCLI3780.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and D. E. Harrison, 2006: The termination of the 1997–98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 26332646, doi:10.1175/JCLI3776.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746, doi:10.1175/2010JCLI3810.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and G. Villarini, 2014: Next season’s hurricanes. Science, 343, 618619, doi:10.1126/science.1247759.

  • Vecchi, G. A., , A. T. Wittenberg, , and A. Rosati, 2006: Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys. Res. Lett., 33, L01706, doi:10.1029/2005GL024738.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687–689, doi:10.1126/science.1164396.

  • Vecchi, G. A., , M. Zhao, , H. Wang, , G. Villarini, , A. Rosati, , A. Kumar, , I. M. Held, , and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2013a: Multi-year predictions of North Atlantic hurricane frequency: Promise and limitations. J. Climate, 26, 53375357, doi:10.1175/JCLI-D-12-00464.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , S. Fueglistaler, , I. M. Held, , T. R. Knutson, , and M. Zhao, 2013b: Impacts of atmospheric temperature changes on tropical cyclone activity. J. Climate, 26, 38773891, doi:10.1175/JCLI-D-12-00503.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2013: Multiseason lead forecast of the North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 36313643, doi:10.1175/JCLI-D-12-00448.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, doi:10.1175/2010MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , J. A. Smith, , M. L. Baeck, , T. Marchok, , and G. A. Vecchi, 2011a: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, doi:10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , and J. A. Smith, 2011b: Is the recorded increase in short duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, doi:10.1029/2010JD015493.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modeling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465, doi:10.1175/MWR-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , R. Goska, , J. A. Smith, , and G. A. Vecchi, 2014a: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00060.1, in press.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , D. A. Lavers, , E. Scocimarro, , M. Zhao, , M. F. Wehner, , G. A. Vecchi, , T. R. Knutson, , and K. E. Reed, 2014b: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 4622–4641, doi:10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666, doi:10.1256/qj.05.65.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212527, doi:10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , J. L. Anderson, , and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760, doi:10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically-based seasonal forecast of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., , M. Fiorino, , C. Landsea, , and K. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , J. K. E. Schemm, , A. Kumar, , W. Wang, , L. Long, , M. Chelliah, , G. D. Bell, , and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500, doi:10.1175/2009JCLI2753.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 56735692, doi:10.1175/JCLI-D-13-00625.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698–722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , T. L. Delworth, , G. A. Vecchi, , and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 2667–2681, doi:10.1175/JCLI-D-13-00577.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in GFDL’s fully-coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , M. J. Harrison, , A. Rosati, , and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , H. Graf, , Y. Leung, , and M. Herzog, 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523, doi:10.1175/JCLI-D-11-00488.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , Y. Leung, , and J. C. L. Chan, 2013a: The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part I: Tropical cyclone recurvature. J. Appl. Meteor. Climatol., 52, 13941416, doi:10.1175/JAMC-D-12-045.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , Y. Leung, , and J. C. L. Chan, 2013b: The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part II: Tropical cyclone landfall. J. Appl. Meteor. Climatol., 52, 14171432, doi:10.1175/JAMC-D-12-046.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , Y. Leung, , and Y. Wang, 2013c: Cluster analysis of post-landfall tracks of landfalling tropical cyclones over China. Climate Dyn., 40, 12371255, doi:10.1007/s00382-012-1519-5.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 452 136
PDF Downloads 101 101 38

On the Seasonal Forecasting of Regional Tropical Cyclone Activity

View More View Less
  • 1 * National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • 2 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 3 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • 4 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado
  • 5 Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, South Korea
  • 6 ** Engility, NOAA/GFDL, Princeton, New Jersey
  • 7 IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
© Get Permissions
Restricted access

Abstract

Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.

Corresponding author address: Gabriel A. Vecchi, NOAA/GFDL, GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: gabriel.a.vecchi@noaa.gov

Abstract

Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.

Corresponding author address: Gabriel A. Vecchi, NOAA/GFDL, GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: gabriel.a.vecchi@noaa.gov
Save