• Bothe, O., , K. Fraedrich, , and X. Zhu, 2011: Large-scale circulations and Tibetan Plateau summer drought and wetness in the high-resolution climate model. Int. J. Climatol., 31, 832846, doi:10.1002/joc.2124.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , J. Sun, , and H. Wang, 2012: A statistical downscaling model for forecasting summer rainfall in China from DEMETER hindcast datasets. Wea. Forecasting, 27, 608628, doi:10.1175/WAF-D-11-00079.1.

    • Search Google Scholar
    • Export Citation
  • Fan, K., 2009: Predicting winter surface air temperature in northeast China. Atmos. Oceanic Sci. Lett., 2, 1417.

  • Fan, K., 2010: A prediction model for Atlantic named storm frequency using a year-by-year increment approach. Wea. Forecasting, 25, 18421851, doi:10.1175/2010WAF2222406.1.

    • Search Google Scholar
    • Export Citation
  • Fan, K., , and H. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974986, doi:10.1175/2009WAF2222194.1.

    • Search Google Scholar
    • Export Citation
  • Fan, K., , H. Wang, , and Y.-J. Choi, 2008: A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chin. Sci. Bull., 53, 602609, doi:10.1007/s11434-008-0083-1.

    • Search Google Scholar
    • Export Citation
  • Fan, K., , Y. Liu, , and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 1017–1030, doi:10.1175/WAF-D-11-00092.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , W. Chen, , C.-Y. Tam, , and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, doi:10.1002/joc.2217.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., , H. Wang, , and S. Li, 2013: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 118, 35343544, doi:10.1002/jgrd.50290.

    • Search Google Scholar
    • Export Citation
  • Gu, W., , C. Y. Li, , X. Wang, , W. Zhou, , and W. J. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101108, doi:10.1007/s00376-009-0101-5.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , H. Wang, , and P. Zhao, 2013: Is the interannual variability of the summer Asian–Pacific Oscillation predictable? J. Climate, 26, 38653876, doi:10.1175/JCLI-D-12-00450.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., , Z. Wen, , W. Zhou, , and D. Wang, 2012: Atmospheric water vapor transport associated with two decadal rainfall shifts over East China. J. Meteor. Soc. Japan, 90, 587602, doi:10.2151/jmsj.2012-501.

    • Search Google Scholar
    • Export Citation
  • Ma, S., , X. Rodó, , and F. J. Doblas-Reyes, 2012: Evaluation of the DEMETER performance for seasonal hindcasts of the Indian summer monsoon rainfall. Int. J. Climatol., 32, 17171729, doi:10.1002/joc.2389.

    • Search Google Scholar
    • Export Citation
  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 15891600, doi:10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Rong, X., , R. Zhang, , and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, doi:10.1007/s11434-010-3098-3.

    • Search Google Scholar
    • Export Citation
  • Sun, B., , and H. Wang, 2013: Larger variability, better predictability? Int. J. Climatol., 33, 23412351, doi:10.1002/joc.3582.

  • Sun, J., , and H. Chen, 2012: A statistical downscaling scheme to improve global precipitation forecasting. Meteor. Atmos. Phys., 117, 87102, doi:10.1007/s00703-012-0195-7.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , H. Wang, , and W. Yuan, 2009: Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J. Geophys. Res., 114, D20110, doi:10.1029/2009JD012395.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, H., 2001: The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci., 18, 376386, doi:10.1007/BF02919316.

    • Search Google Scholar
    • Export Citation
  • Wang, H., 2002: The instability of the East Asian summer monsoon–ENSO relations. Adv. Atmos. Sci., 19, 111, doi:10.1007/s00376-002-0029-5.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , Y. Zhang, , and X. Lang, 2010: On the predictand of short-term climate prediction (in Chinese). Climate Environ. Res., 15, 225228.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , K. Fan, , X. Lang, , J. Sun, , and L. Chen, 2012: Initiating and applying the interannual increment prediction approach (in Chinese). Advances in Climate Prediction Theory and Technique of China, China Meteorological Press, 120139.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. Wang, , W. Zhou, , and C. Li, 2012: Interdecadal modulation of the influence of La Niña events on Mei-yu rainfall over the Yangtze River Valley. Adv. Atmos. Sci., 29, 157168, doi:10.1007/s00376-011-1021-8.

    • Search Google Scholar
    • Export Citation
  • Wu, J., , and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Chin. J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , Y. Zhu, , and R. Zhang, 2007: An Asian–Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293303, doi:10.1007/s00382-007-0236-y.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , Z. Cao, , and J. Chen, 2010: A summer teleconnection pattern over the extratropical Northern Hemisphere and associated mechanisms. Climate Dyn., 35, 523534, doi:10.1007/s00382-009-0699-0.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , B. Wang, , and X. Zhou, 2012: Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian–Pacific Oscillation. Climate Dyn., 39, 1197–1207, doi:10.1007/s00382-012-1348-6.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 1999: Part I: The overview (in Chinese). Summertime Floods and Droughts in China and the Associated Circulations, China Meteorological Press, 1012.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., , and P. Zhao, 2010: Influence of the Asian–Pacific oscillation on spring precipitation over central eastern China. Adv. Atmos. Sci., 27, 575582, doi:10.1007/s00376-009-9058-7.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., , X. Cui, , and P. Zhao, 2008: Relationship between the Asian–Pacific oscillation and the tropical cyclone frequency in the western North Pacific. Sci. China, 51D, 380385, doi:10.1007/s11430-008-0014-7.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., , P. Zhao, , and X. Cui, 2010: Linkage between the Asian–Pacific Oscillation and the sea surface temperature in the North Pacific. Chin. Sci. Bull., 55, 11931198, doi:10.1007/s11434-009-0386-x.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , H. Wang, , W. Zhou, , and J. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 14631473, doi:10.1007/s00382-010-0852-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 4
PDF Downloads 6 6 1

Improving the Prediction of the Summer Asian–Pacific Oscillation Using the Interannual Increment Approach

View More View Less
  • 1 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
  • 2 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
  • 3 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

The summer Asian–Pacific oscillation (APO) is a dominant teleconnection pattern over the extratropical Northern Hemisphere that links the large-scale atmospheric circulation anomalies over the Asian–North Pacific Ocean sector. In this study, the direct Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) model outputs from 1960 to 2001, which are limited in predicting the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations, are applied using the interannual increment approach to improve the predictions of the summer APO. By treating the year-to-year increment as the predictand, the interannual increment scheme is shown to significantly improve the predictive ability for the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations. The improvements for the interannual and interdecadal summer APO variability predictions in the interannual increment scheme relative to the original scheme are clear and significant. Compared with the DEMETER direct outputs, the statistical model with two predictors of APO and sea surface temperature anomaly over the Atlantic shows a significantly improved ability to predict the interannual variability of the summer rainfall over the middle and lower reaches of the Yangtze River valley (SRYR). This study therefore describes a more efficient approach for predicting the APO and the SRYR.

Corresponding author address: Yanyan Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Nansen-Zhu International Research Centre, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: hyy@mail.iap.ac.cn

Abstract

The summer Asian–Pacific oscillation (APO) is a dominant teleconnection pattern over the extratropical Northern Hemisphere that links the large-scale atmospheric circulation anomalies over the Asian–North Pacific Ocean sector. In this study, the direct Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) model outputs from 1960 to 2001, which are limited in predicting the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations, are applied using the interannual increment approach to improve the predictions of the summer APO. By treating the year-to-year increment as the predictand, the interannual increment scheme is shown to significantly improve the predictive ability for the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations. The improvements for the interannual and interdecadal summer APO variability predictions in the interannual increment scheme relative to the original scheme are clear and significant. Compared with the DEMETER direct outputs, the statistical model with two predictors of APO and sea surface temperature anomaly over the Atlantic shows a significantly improved ability to predict the interannual variability of the summer rainfall over the middle and lower reaches of the Yangtze River valley (SRYR). This study therefore describes a more efficient approach for predicting the APO and the SRYR.

Corresponding author address: Yanyan Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Nansen-Zhu International Research Centre, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: hyy@mail.iap.ac.cn
Save