• Bellenger, H., , E. Guilyardi, , J. Leloup, , M. Lengaigne, , and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619, doi:10.1175/3241.1.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., , C. Langlais, , and C. Maes, 2014: Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Climate Dyn., 42, 30613076, doi:10.1007/s00382-013-1931-5.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments, and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, doi:10.1002/jgrd.50316.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., , D. H. Bromwich, , and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. Shukla, , J. Kinter, , and M. J. Rodwell, 2002: The climate of the twentieth century project. CLIVAR Exchanges, Vol. 7, No. 2, International CLIVAR Project Office, Southampton, United Kingdom, 3739.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., , T. Andrews, , P. Good, , J. M. Gregory, , L. S. Jackson, , and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., , and X. Zheng, 2007a: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849866, doi:10.1007/s00382-006-0214-9.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., , and X. Zheng, 2007b: Coherent patterns of interannual variability of the atmospheric circulation: The role of intraseasonal variability. Frontiers in Turbulence and Coherent Structures, J. Denier, and J. S. Frederiksen, Eds., World Scientific Lecture Notes in Complex Systems, Vol. 6, World Scientific, 87–120.

  • Frederiksen, J. S., , and C. S. Frederiksen, 1993: Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model. J. Atmos. Sci., 50, 31483163, doi:10.1175/1520-0469(1993)050<3148:SHSTBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Grainger, S., , C. S. Frederiksen, , and X. Zheng, 2008: A method for evaluating the modes of variability in general circulation models. ANZIAM J.,50, C399–C412. [Available online at http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1431.]

  • Grainger, S., , C. S. Frederiksen, , and X. Zheng, 2011a: Estimating components of covariance between two climate variables using model ensembles. ANZIAM J.,52, C318–C332. [Available online at http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3928.]

  • Grainger, S., and Coauthors, 2011b: Modes of variability of Southern Hemisphere atmospheric circulation estimated by AGCMs. Climate Dyn., 36, 473490, doi:10.1007/s00382-009-0720-7.

    • Search Google Scholar
    • Export Citation
  • Grainger, S., , C. S. Frederiksen, , and X. Zheng, 2013: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and projections. Climate Dyn., 41, 479500, doi:10.1007/s00382-012-1659-7.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12, 28082830, doi:10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , and K. C. Mo, 1998: Interannual and intraseasonal variability in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., Vol. 49, Amer. Meteor. Soc., 307–336.

  • Kirtman, B., , E. Schneider, , D. Straus, , D. Min, , and R. Burgman, 2011: How weather impacts the forced climate response. Climate Dyn., 37, 23892416, doi:10.1007/s00382-011-1084-3.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , R. Furrer, , C. Tebaldi, , J. Cermak, , and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, doi:10.1175/2009JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , D. Masson, , and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., , R. G. Jones, , and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 71007121, doi:10.1175/JCLI-D-11-00526.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–843.

  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , J. C. Fyfe, , M. H. P. Ambaum, , D. B. Stephenson, , and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pennell, C., , and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367, doi:10.1175/2010JCLI3814.1.

  • Picaut, J., , M. Ioualalen, , C. Menkes, , T. Delcroix, , and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, doi:10.1126/science.274.5292.1486.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , T. P. Barnett, , B. D. Santer, , and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106, 84418446, doi:10.1073/pnas.0900094106.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , and S. E. Perkins, 2008: Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact., 12, 150, doi:10.1175/2008EI260.1.

    • Search Google Scholar
    • Export Citation
  • Purich, A., , T. Cowan, , S.-K. Min, , and W. Cai, 2013: Autumn precipitation trends over Southern Hemisphere midlatitudes as simulated by CMIP5 models. J. Climate, 26, 83418356, doi:10.1175/JCLI-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2005: Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Wea. Rev., 133, 977988, doi:10.1175/MWR2900.1.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., , C. K. Folland, , K. Maskell, , and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704.

    • Search Google Scholar
    • Export Citation
  • Selten, F. M., , G. W. Branstator, , H. A. Dijkstra, , and M. Kliphuis, 2004: Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett., 31, L21205, doi:10.1029/2004GL020739.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tukey, J. W., 1977: Exploratory Data Analysis. Addison-Wesley, 688 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Weigel, A. P., , R. Knutti, , M. A. Liniger, , and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 41754191, doi:10.1175/2010JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Yokohata, T., and Coauthors, 2013: Reliability and importance of structural diversity of climate model ensembles. Climate Dyn., 41, 27452763, doi:10.1007/s00382-013-1733-9.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , and C. S. Frederiksen, 1999: Validating interannual variability in an ensemble of AGCM simulations. J. Climate, 12, 23862396, doi:10.1175/1520-0442(1999)012<2386:VIVIAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , and C. S. Frederiksen, 2004: Variability of seasonal-mean fields arising from intraseasonal variability: Part 1, methodology. Climate Dyn., 23, 177191, doi:10.1007/s00382-004-0428-7.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , H. Nakamura, , and J. A. Renwick, 2000: Potential predictability of seasonal means based on monthly time series of meteorological variables. J. Climate, 13, 25912604, doi:10.1175/1520-0442(2000)013<2591:PPOSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , M. Sugi, , and C. S. Frederiksen, 2004: Interannual variability and predictability in an ensemble of climate simulations with the MRI-JMA AGCM. J. Meteor. Soc. Japan, 82, 118, doi:10.2151/jmsj.82.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , D. M. Straus, , C. S. Frederiksen, , and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 18161829, doi:10.1002/qj.492.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 6
PDF Downloads 13 13 6

Assessment of Modes of Interannual Variability of Southern Hemisphere Atmospheric Circulation in CMIP5 Models

View More View Less
  • 1 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
  • 2 College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
© Get Permissions
Restricted access

Abstract

An assessment is made of the modes of interannual variability in the seasonal mean summer and winter Southern Hemisphere (SH) 500-hPa geopotential height in the twentieth century in models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) dataset. Modes of variability of both the slow (signal) and intraseasonal (noise) components in the CMIP5 models are evaluated against those estimated from reanalysis data. There is general improvement in the leading modes of the slow (signal) component in CMIP5 models compared with the CMIP phase 3 (CMIP3) dataset. The largest improvement is in the spatial structures of the modes related to El Niño–Southern Oscillation variability in SH summer. An overall score metric is significantly higher for CMIP5 over CMIP3 in both seasons. The leading modes in the intraseasonal noise component are generally well reproduced in CMIP5 models, and there are few differences from CMIP3. A new total overall score metric is used to rank the CMIP5 models over both seasons. Weighting the seasons by the relative spread of overall scores is shown to be suitable for generating multimodel ensembles for further analysis of interannual variability. In multimodel ensembles, it is found that an ensemble of size 5 or 6 is sufficient in SH summer to reproduce well the dominant modes. In contrast, about 13 models are typically are required in SH winter. It is shown that it is necessary that the selected models individually reproduce well the leading modes of the slow component.

Corresponding author address: Simon Grainger, Centre for Australian Weather and Climate Research, Bureau of Meteorology, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: s.grainger@bom.gov.au

Abstract

An assessment is made of the modes of interannual variability in the seasonal mean summer and winter Southern Hemisphere (SH) 500-hPa geopotential height in the twentieth century in models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) dataset. Modes of variability of both the slow (signal) and intraseasonal (noise) components in the CMIP5 models are evaluated against those estimated from reanalysis data. There is general improvement in the leading modes of the slow (signal) component in CMIP5 models compared with the CMIP phase 3 (CMIP3) dataset. The largest improvement is in the spatial structures of the modes related to El Niño–Southern Oscillation variability in SH summer. An overall score metric is significantly higher for CMIP5 over CMIP3 in both seasons. The leading modes in the intraseasonal noise component are generally well reproduced in CMIP5 models, and there are few differences from CMIP3. A new total overall score metric is used to rank the CMIP5 models over both seasons. Weighting the seasons by the relative spread of overall scores is shown to be suitable for generating multimodel ensembles for further analysis of interannual variability. In multimodel ensembles, it is found that an ensemble of size 5 or 6 is sufficient in SH summer to reproduce well the dominant modes. In contrast, about 13 models are typically are required in SH winter. It is shown that it is necessary that the selected models individually reproduce well the leading modes of the slow component.

Corresponding author address: Simon Grainger, Centre for Australian Weather and Climate Research, Bureau of Meteorology, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: s.grainger@bom.gov.au
Save