A Conceptual Model of Ocean Heat Uptake under Climate Change

David P. Marshall Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by David P. Marshall in
Current site
Google Scholar
PubMed
Close
and
Laure Zanna Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Laure Zanna in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A conceptual model of ocean heat uptake is developed as a multilayer generalization of Gnanadesikan. The roles of Southern Ocean Ekman and eddy transports, North Atlantic Deep Water (NADW) formation, and diapycnal mixing in controlling ocean stratification and transient heat uptake are investigated under climate change scenarios, including imposed surface warming, increased Southern Ocean wind forcing, with or without eddy compensation, and weakened meridional overturning circulation (MOC) induced by reduced NADW formation. With realistic profiles of diapycnal mixing, ocean heat uptake is dominated by Southern Ocean Ekman transport and its long-term adjustment controlled by the Southern Ocean eddy transport. The time scale of adjustment setting the rate of ocean heat uptake increases with depth. For scenarios with increased Southern Ocean wind forcing or weakened MOC, deepened stratification results in enhanced ocean heat uptake. In each of these experiments, the role of diapycnal mixing in setting ocean stratification and heat uptake is secondary. Conversely, in experiments with enhanced diapycnal mixing as employed in “upwelling diffusion” slab models, the contributions of diapycnal mixing and Southern Ocean Ekman transport to the net heat uptake are comparable, but the stratification extends unrealistically to the sea floor. The simple model is applied to interpret the output of an Earth system model, the Second Generation Canadian Earth System Model (CanESM2), in which the atmospheric CO2 concentration is increased by 1% yr−1 until quadrupling, where it is found that Southern Ocean Ekman transport is essential to reproduce the magnitude and vertical profile of ocean heat uptake.

Corresponding author address: Dr. David P. Marshall, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. E-mail: marshall@atm.ox.ac.uk

Abstract

A conceptual model of ocean heat uptake is developed as a multilayer generalization of Gnanadesikan. The roles of Southern Ocean Ekman and eddy transports, North Atlantic Deep Water (NADW) formation, and diapycnal mixing in controlling ocean stratification and transient heat uptake are investigated under climate change scenarios, including imposed surface warming, increased Southern Ocean wind forcing, with or without eddy compensation, and weakened meridional overturning circulation (MOC) induced by reduced NADW formation. With realistic profiles of diapycnal mixing, ocean heat uptake is dominated by Southern Ocean Ekman transport and its long-term adjustment controlled by the Southern Ocean eddy transport. The time scale of adjustment setting the rate of ocean heat uptake increases with depth. For scenarios with increased Southern Ocean wind forcing or weakened MOC, deepened stratification results in enhanced ocean heat uptake. In each of these experiments, the role of diapycnal mixing in setting ocean stratification and heat uptake is secondary. Conversely, in experiments with enhanced diapycnal mixing as employed in “upwelling diffusion” slab models, the contributions of diapycnal mixing and Southern Ocean Ekman transport to the net heat uptake are comparable, but the stratification extends unrealistically to the sea floor. The simple model is applied to interpret the output of an Earth system model, the Second Generation Canadian Earth System Model (CanESM2), in which the atmospheric CO2 concentration is increased by 1% yr−1 until quadrupling, where it is found that Southern Ocean Ekman transport is essential to reproduce the magnitude and vertical profile of ocean heat uptake.

Corresponding author address: Dr. David P. Marshall, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. E-mail: marshall@atm.ox.ac.uk
Save
  • Allison, L., H. Johnson, D. Marshall, and D. Munday, 2010: Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett.,37, L12605, doi:10.1029/2010GL043355.

  • Allison, L., H. Johnson, and D. Marshall, 2011: Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline. J. Mar. Res., 69, 167189, doi:10.1357/002224011798765330.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 1754–1759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett.,33, L07608, doi:10.1029/2005GL025352.

  • Boé, J., A. Hall, and X. Qu, 2009: Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophys. Res. Lett.,36, L22701, doi:10.1029/2009GL040845.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and Coauthors, 1979: Carbon dioxide and climate: A scientific assessment. Report of an ad hoc study on carbon dioxide and climate, for the Climate Research Board, National Research Council, 22 pp.

  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. McDougall, 1991: A model of sea-level rise caused by ocean thermal expansion. J. Climate, 4, 438456, doi:10.1175/1520-0442(1991)004<0438:AMOSLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dalan, F., P. H. Stone, and A. P. Sokolov, 2005: Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part II: Global warming scenario. J. Climate, 18, 24822496, doi:10.1175/JCLI3412.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of mesoscale tracer transport in the global ocean circulation. Science, 264, 11231126, doi:10.1126/science.264.5162.1123.

    • Search Google Scholar
    • Export Citation
  • de Boer, A., A. Gnanadesikan, N. Edwards, and A. Watson, 2010a: Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr., 40, 368380, doi:10.1175/2009JPO4200.1.

    • Search Google Scholar
    • Export Citation
  • de Boer, A., A. J. Watson, N. R. Edwards, and K. I. C. Oliver, 2010b: A multi-variable box model approach to the soft tissue carbon pump. Climate Past, 6, 827841, doi:10.5194/cp-6-827-2010.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720, doi:10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, doi:10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Ferraria, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, doi:10.1073/pnas.1323922111.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Fürst, J. J., and A. Levermann, 2012: A minimal model for wind- and mixing-driven overturning: Threshold behavior for both driving mechanisms. Climate Dyn., 38, 239260, doi:10.1007/s00382-011-1003-7.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., O. A. Saenko, K. Zickfeld, M. Eby, and A. J. Weaver, 2007: The role of poleward-intensifying winds on Southern Ocean warming. J. Climate, 20, 53915400, doi:10.1175/2007JCLI1764.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P., F. Bryan, G. Danabasoglu, S. Doney, W. Holland, W. Large, and J. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11, 12871306, doi:10.1175/1520-0442(1998)011<1287:TNCSMG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013a: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, doi:10.1175/JCLI-D-12-00195.1.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013b: Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Climate, 26, 18591876, doi:10.1175/JCLI-D-12-00196.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model of the structure of the oceanic pycnocline. Science, 283, 20772081, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The ocean circulation in thermohaline coordinates. J. Climate, 18, 26042616, doi:10.1175/JCLI3436.1.

    • Search Google Scholar
    • Export Citation
  • Goodwin, P., 2012: An isopycnal box model with predictive deep-ocean structure for biogeochemical cycling applications. Ocean Modell., 51, 1936, doi:10.1016/j.ocemod.2012.04.005.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Kolterman, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes Seeschifffahrt und Hydrographie Rep. 35. [Available online at http://odv.awi.de/en/data/ocean/woce_global_hydrographic_climatology/.]

  • Graham, F. S., and T. J. McDougall, 2013: Quantifying the nonconservative production of Conservative Temperature, potential temperature, and entropy. J. Phys. Oceanogr., 43, 838862, doi:10.1175/JPO-D-11-0188.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett.,32, L23605, doi:10.1029/2005GL023209.

  • Griffies, S. M., R. C. Paconowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, doi:10.1175/JPO2980.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, A. Lacis, I. Fung, and D. Rind, 1985: Climate response times: Dependence on climate sensitivity and ocean mixing. Science, 229, 857859, doi:10.1126/science.229.4716.857.

    • Search Google Scholar
    • Export Citation
  • Harvey, L. D. D., and S. H. Schneider, 1985: Transient climate response to external forcing on 100 to 104 year time scales. Part 1: Experiments with globally averaged, coupled, atmosphere and ocean energy balance models. J. Geophys. Res., 90, 21912205, doi:10.1029/JD090iD01p02191.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere–ocean models. Climate Dyn., 9, 5361, doi:10.1007/BF00210008.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, doi:10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Hoffert, M. I., A. J. Callegari, and C.-T. Hsieh, 1980: The role of deep sea heat storage in the secular response to climatic forcing. J. Geophys. Res., 85, 66676679, doi:10.1029/JC085iC11p06667.

    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., P. H. Stone, A. P. Sokolov, and I. V. Kamenkovich, 2003: The deep-ocean heat uptake in transient climate change. J. Climate, 16, 13521363, doi:10.1175/1520-0442-16.9.1352.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45-46, 3758, doi:10.1016/j.ocemod.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, doi:10.1175/2008JPO3878.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132, doi:10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., D. P. Marshall, and D. A. J. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29, 821836, doi:10.1007/s00382-007-0262-9.

    • Search Google Scholar
    • Export Citation
  • Jones, D. C., T. Ito, and N. Lovenduski, 2011: The transient response of the Southern Ocean pycnocline to changing atmospheric winds. Geophys. Res. Lett.,38, L15604, doi:10.1029/2011GL048145.

  • Kamenkovich, I., and T. Radko, 2011: Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res., 69, 277308, doi:10.1357/002224011798765286.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett.,35, L09701, doi:10.1029/2007GL032904.

  • Kostov, Y., K. C. Armour, and J. Marshall, 2014: Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett., 41, 2108–2116, doi:10.1002/2013GL058998.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett.,39, L18608, doi:10.1029/2012GL052952.

  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, doi:10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287, 22252229, doi:10.1126/science.287.5461.2225.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, and T. P. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett.,32, L02604, doi:10.1029/2004GL021592.

  • Levitus, S., J. I. Antonov, and T. P. Boyer, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett.,39, L10603, doi:10.1029/2012GL051106.

  • Li, C., J.-S. von Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 10711086, doi:10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27, 17131728, doi:10.1175/1520-0485(1997)027<1713:BMATDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, doi:10.1357/0022240973224373.

  • Marshall, D., and H. L. Johnson, 2013: Propagation of meridional circulation anomalies along western and eastern boundaries. J. Phys. Oceanogr., 43, 26992717, doi:10.1175/JPO-D-13-0134.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and W. K. Dewar, 1998: Vertical mixing and cabbeling in layered models. J. Phys. Oceanogr., 28, 14581480, doi:10.1175/1520-0485(1998)028<1458:VMACIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp. [Available online at http://www.teos-10.org/publications.htm, under “Introductory Articles on TEOS-10.”]

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Munday, D., H. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, doi:10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772009, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, doi:10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmidt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C. B., and U. Cubasch, 1996: Emulation of the results from a coupled general circulation model using a simple climate model. Geophys. Res. Lett., 23, 11071110, doi:10.1029/96GL01065.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C. B., J. M. Gregory, and T. J. Osborn, 2001: Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results. Climate Dyn., 17, 601613, doi:10.1007/PL00007931.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28, 20502063, doi:10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogelj, J., M. Meinshausen, and R. Knutti, 2012: Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Climate Change, 2, 248253, doi:10.1038/nclimate1385.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M. A. A., M. Winton, R. J. Stouffer, S. M. Griffies, and R. Hallberg, 2013: Northern high-latitude heat budget decomposition and transient warming. J. Climate, 26, 609621, doi:10.1175/JCLI-D-11-00695.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2011: Time-dependent adjustment in a simple model of the mid-depth meridional overturning cell. J. Phys. Oceanogr., 41, 10091025, doi:10.1175/2010JPO4562.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55, 223275, doi:10.1357/0022240973224382.

    • Search Google Scholar
    • Export Citation
  • Sandström, J. W., 1916: Meteorologische studien—à schedischen hochgebirge. Göteborgs K. Vetensk. Vitterhets-Samh. Handl.,10, 242.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, doi:10.1175/JPO-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Straub, D., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, doi:10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., J. L. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography,21, PA2005, doi:10.1029/2005PA001154.

  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, doi:10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30, 933954, doi:10.1175/1520-0485(2000)030<0933:LSCAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, doi:10.1007/s00382-011-1063-8.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., W. P. Sijp, and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, doi:10.1175/JPO-D-12-0179.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3035 1170 281
PDF Downloads 1847 420 64