Statistical Downscaling Multimodel Forecasts for Seasonal Precipitation and Surface Temperature over the Southeastern United States

Di Tian Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida

Search for other papers by Di Tian in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Martinez Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida

Search for other papers by Christopher J. Martinez in
Current site
Google Scholar
PubMed
Close
,
Wendy D. Graham Agricultural and Biological Engineering Department, and Water Institute, University of Florida, Gainesville, Florida

Search for other papers by Wendy D. Graham in
Current site
Google Scholar
PubMed
Close
, and
Syewoon Hwang Agricultural Engineering Department, Gyeongsang National University, Jinju, South Korea

Search for other papers by Syewoon Hwang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study compared two types of approaches to downscale seasonal precipitation (P) and 2-m air temperature (T2M) forecasts from the North American Multimodel Ensemble (NMME) over the states of Alabama, Georgia, and Florida in the southeastern United States (SEUS). Each NMME model forecast was evaluated. Two multimodel ensemble (MME) schemes were tested by assigning equal weight to all forecast members (SuperEns) or by assigning equal weights to each model’s ensemble mean (MeanEns). One type of downscaling approach used was a model output statistics (MOS) method, which was based on direct spatial disaggregation and bias correction of the NMME P and T2M forecasts using the quantile mapping technique [spatial disaggregation with bias correction (SDBC)]. The other type of approach used was a perfect prognosis (PP) approach using nonparametric locally weighted polynomial regression (LWPR) models, which used the NMME forecasts of Niño-3.4 sea surface temperatures (SSTs) to predict local-scale P and T2M. Both SDBC and LWPR downscaled P showed skill in winter but no skill or limited skill in summer at all lead times for all NMME models. The SDBC downscaled T2M were skillful only for the Climate Forecast System, version 2 (CFSv2), model even at far lead times, whereas the LWPR downscaled T2M showed limited skill or no skill for all NMME models. In many cases, the LWPR method showed significantly higher skill than the SDBC. After bias correction, the SuperEns mostly showed higher skill than the MeanEns and most of the single models, but its skill did not outperform the best single model.

Current affiliation: Civil and Environmental Engineering Department, Princeton University, Princeton, New Jersey.

Corresponding author address: Di Tian, Civil and Environmental Engineering Department, Princeton University, Engineering Quadrangle, 59 Olden Street, Princeton, NJ 08544. E-mail: dtian@princeton.edu

Abstract

This study compared two types of approaches to downscale seasonal precipitation (P) and 2-m air temperature (T2M) forecasts from the North American Multimodel Ensemble (NMME) over the states of Alabama, Georgia, and Florida in the southeastern United States (SEUS). Each NMME model forecast was evaluated. Two multimodel ensemble (MME) schemes were tested by assigning equal weight to all forecast members (SuperEns) or by assigning equal weights to each model’s ensemble mean (MeanEns). One type of downscaling approach used was a model output statistics (MOS) method, which was based on direct spatial disaggregation and bias correction of the NMME P and T2M forecasts using the quantile mapping technique [spatial disaggregation with bias correction (SDBC)]. The other type of approach used was a perfect prognosis (PP) approach using nonparametric locally weighted polynomial regression (LWPR) models, which used the NMME forecasts of Niño-3.4 sea surface temperatures (SSTs) to predict local-scale P and T2M. Both SDBC and LWPR downscaled P showed skill in winter but no skill or limited skill in summer at all lead times for all NMME models. The SDBC downscaled T2M were skillful only for the Climate Forecast System, version 2 (CFSv2), model even at far lead times, whereas the LWPR downscaled T2M showed limited skill or no skill for all NMME models. In many cases, the LWPR method showed significantly higher skill than the SDBC. After bias correction, the SuperEns mostly showed higher skill than the MeanEns and most of the single models, but its skill did not outperform the best single model.

Current affiliation: Civil and Environmental Engineering Department, Princeton University, Princeton, New Jersey.

Corresponding author address: Di Tian, Civil and Environmental Engineering Department, Princeton University, Engineering Quadrangle, 59 Olden Street, Princeton, NJ 08544. E-mail: dtian@princeton.edu
Save
  • Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, doi:10.1002/joc.2312.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2012: A comparison of skill of CFSv1 and CFSv2 hindcasts of Niño3.4 SST. Science and Technology Infusion Climate Bulletin, NOAA/National Weather Service, Silver Spring, MD, 18–28. [Available online at http://www.nws.noaa.gov/ost/climate/STIP/37CDPW/37cdpw-tbarnston.pdf.]

  • Bohn, T. J., M. Y. Sonessa, and D. P. Lettenmaier, 2010: Seasonal hydrologic forecasting: Do multimodel ensemble averages always yield improvements in forecast skill? J. Hydrometeor., 11, 13581372, doi:10.1175/2010JHM1267.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, N., A. Wood, N. Voisin, D. Lettenmaier, and R. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., D. Cayan, M. Meyer, and A. Jeton, 2004: Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Climatic Change, 62, 283317, doi:10.1023/B:CLIM.0000013683.13346.4f.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133, 29722995, doi:10.1175/MWR3016.1.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 57A, 234252, doi:10.1111/j.1600-0870.2005.00104.x.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian, 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 13711386, doi:10.1016/j.advwatres.2006.11.014.

    • Search Google Scholar
    • Export Citation
  • Feddersen, H., and U. Andersen, 2005: A method for statistical downscaling of seasonal ensemble predictions. Tellus, 57A, 398408, doi:10.1111/j.1600-0870.2005.00102.x.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Grantz, K., B. Rajagopalan, M. Clark, and E. Zagona, 2005: A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resour. Res., 41, W10410, doi:10.1029/2004WR003467.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26, 13971415, doi:10.1002/joc.1318.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., M. D. Dettinger, and D. R. Cayan, 2008: Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. California Energy Commission PIER Final Project Rep. CEC-500-2007-123, 62 pp.

  • Hwang, S., and W. D. Graham, 2013: Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrol. Earth Syst. Sci., 17, 44814502, doi:10.5194/hess-17-4481-2013.

    • Search Google Scholar
    • Export Citation
  • Hwang, S., W. D. Graham, J. L. Hernández, C. Martinez, J. W. Jones, and A. Adams, 2011: Quantitative spatiotemporal evaluation of dynamically downscaled MM5 precipitation predictions over the Tampa Bay region, Florida. J. Hydrometeor., 12, 14471464, doi:10.1175/2011JHM1309.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. T., C. J. Martinez, G. A. Kiker, and S. Leitman, 2013: Pacific and Atlantic sea surface temperature influences on streamflow in the Apalachicola–Chattahoochee–Flint river basin. J. Hydrol., 489, 160179, doi:10.1016/j.jhydrol.2013.03.005.

    • Search Google Scholar
    • Export Citation
  • Juneng, L., F. T. Tangang, H. Kang, W.-J. Lee, and Y. K. Seng, 2010: Statistical downscaling forecasts for winter monsoon precipitation in Malaysia using multimodel output variables. J. Climate, 23, 1727, doi:10.1175/2009JCLI2873.1.

    • Search Google Scholar
    • Export Citation
  • Kalra, A., and S. Ahmad, 2012: Estimating annual precipitation for the Colorado River basin using oceanic-atmospheric oscillations. Water Resour. Res., 48, W06527, doi:10.1029/2011WR010667.

    • Search Google Scholar
    • Export Citation
  • Kang, H., K.-H. An, C.-K. Park, A. L. S. Solis, and K. Stitthichivapak, 2007: Multimodel output statistical downscaling prediction of precipitation in the Philippines and Thailand. J. Geophys. Res., 34, L15710, doi:10.1029/2007GL030730.

    • Search Google Scholar
    • Export Citation
  • Kar, S. C., N. Acharya, U. C. Mohanty, and M. A. Kulkarni, 2012: Skill of monthly rainfall forecasts over India using multi-model ensemble schemes. Int. J. Climatol., 32, 12711286, doi:10.1002/joc.2334.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and D. Min, 2009: Multimodel ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137, 29082930, doi:10.1175/2009MWR2672.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, doi:10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, doi:10.1175/MWR-D-11-00335.1.

    • Search Google Scholar
    • Export Citation
  • Lall, U., Y. I. Moon, H. H. Kwon, and K. Bosworth, 2006: Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake. Water Resour. Res., 42, W05422, doi:10.1029/2004WR003782.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and A. Beraki, 2012: Multi-model forecast skill for mid-summer rainfall over southern Africa. Int. J. Climatol., 32, 303314, doi:10.1002/joc.2273.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., D. DeWitt, D. Lee, A. Beraki, and D. Lötter, 2012: Seasonal rainfall prediction skill over South Africa: One- versus two-tiered forecasting systems. Wea. Forecasting, 27, 489501, doi:10.1175/WAF-D-11-00078.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D., L. Luo, and E. F. Wood, 2009: A multiple model assessment of seasonal climate forecast skill for applications. J. Geophys. Res., 36, L23711, doi:10.1029/2009GL041365.

    • Search Google Scholar
    • Export Citation
  • Loader, C., 1999: Statistics and Computing: Local Regression and Likelihood. Springer, 308 pp.

  • Luo, L., and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884, doi:10.1175/2008JHM980.1.

    • Search Google Scholar
    • Export Citation
  • Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Martinez, C. J., and J. W. Jones, 2011: Atlantic and Pacific sea surface temperatures and corn yields in the southeastern USA: Lagged relationships and forecast model development. Int. J. Climatol., 31, 592604, doi:10.1002/joc.2082.

    • Search Google Scholar
    • Export Citation
  • Martinez, C. J., G. A. Baigorria, and J. W. Jones, 2009: Use of climate indices to predict corn yields in southeast USA. Int. J. Climatol., 29, 16801691, doi:10.1002/joc.1817.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and G. M. Mimmack, 2002: Comparison of some statistical methods of probabilistic forecasting of ENSO. J. Climate, 15, 829, doi:10.1175/1520-0442(2002)015<0008:COSSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., H. Hidalgo, T. Das, M. Dettinger, and D. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325, doi:10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Ndiaye, O., M. N. Ward, and W. M. Thiaw, 2011: Predictability of seasonal sahel rainfall using GCMs and lead-time improvements through the use of a coupled model. J. Climate, 24, 19311949, doi:10.1175/2010JCLI3557.1.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1958: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Peng, P., A. Kumar, H. van den Dool, and A. G. Barnston, 2002: An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107, 4710, doi:10.1029/2002JD002712.

    • Search Google Scholar
    • Export Citation
  • Piechota, T., F. Chiew, J. Dracup, and T. McMahon, 2001: Development of exceedance probability streamflow forecast. J. Hydrol. Eng., 6, 2028, doi:10.1061/(ASCE)1084-0699(2001)6:1(20).

    • Search Google Scholar
    • Export Citation
  • Prairie, J., B. Rajagopalan, T. Fulp, and E. Zagona, 2005: Statistical nonparametric model for natural salt estimation. J. Environ. Eng., 131, 130138, doi:10.1061/(ASCE)0733-9372(2005)131:1(130).

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, M. Clark, and E. Zagona, 2006: A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River basin. Water Resour. Res., 42, W09404, doi:10.1029/2005WR004653.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Vol. 27, 118 pp.

  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 2185–2208, doi:10.1175/JCLI-D-12-00823.1.

  • Salathe, E. P., P. W. Mote, and M. W. Wiley, 2007: Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int. J. Climatol., 27, 16111621, doi:10.1002/joc.1540.

    • Search Google Scholar
    • Export Citation
  • Schmidt, N., E. K. Lipp, J. B. Rose, and M. E. Luther, 2001: ENSO influences on seasonal rainfall and river discharge in Florida. J. Climate, 14, 615628, doi:10.1175/1520-0442(2001)014<0615:EIOSRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singhrattna, N., B. Rajagopalan, M. Clark, and K. Krishna Kumar, 2005: Seasonal forecasting of Thailand summer monsoon rainfall. Int. J. Climatol., 25, 649664, doi:10.1002/joc.1144.

    • Search Google Scholar
    • Export Citation
  • Sun, H., and D. J. Furbish, 1997: Annual precipitation and river discharges in Florida in response to El Niño- and La Niña-sea surface temperature anomalies. J. Hydrol., 199, 7487, doi:10.1016/S0022-1694(96)03303-3.

    • Search Google Scholar
    • Export Citation
  • Tian, D., and C. J. Martinez, 2012a: Comparison of two analog-based downscaling methods for regional reference evapotranspiration forecasts. J. Hydrol., 475, 350364, doi:10.1016/j.jhydrol.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Tian, D., and C. J. Martinez, 2012b: Forecasting reference evapotranspiration using retrospective forecast analogs in the southeastern United States. J. Hydrometeor., 13, 18741892, doi:10.1175/JHM-D-12-037.1.

    • Search Google Scholar
    • Export Citation
  • Tian, D., C. J. Martinez, and W. D. Graham, 2014: Seasonal prediction of regional reference evapotranspiration (ETo) based on Climate Forecast System version 2 (CFSv2). J. Hydrometeor., 15, 1166–1188, doi:10.1175/JHM-D-13-087.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., and A. G. Barnston, 2008: Skill of multimodel ENSO probability forecasts. Mon. Wea. Rev., 136, 39333946, doi:10.1175/2008MWR2431.1.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., 2010: Seasonal climate forecasting. Meteor. Appl., 17, 251268, doi:10.1002/met.184.

  • Troccoli, A., M. Harrison, D. L. T. Anderson, and S. J. Mason, 2008: Seasonal Climate: Forecasting and Managing Risk. Earth and Environmental Studies, Vol. 82, Springer Verlag, 467 pp.

  • van den Dool, H. M., and Z. Toth, 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6, 7685, doi:10.1175/1520-0434(1991)006<0076:WDFFNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. J. Geophys. Res., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
  • Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek, 2003: A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resour. Res., 39, 1199, doi:10.1029/2002WR001769.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., K. Mo, and E. F. Wood, 2012: Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J. Hydrometeor., 13, 463482, doi:10.1175/JHM-D-11-038.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. J. Geophys. Res., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, J. K. Roundy, and M. Pan, 2013: CFSv2-based seasonal hydroclimatic forecasts over conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Search Google Scholar
    • Export Citation
  • Yun, W. T., L. Stefanova, and T. N. Krishnamurti, 2003: Improvement of the multimodel superensemble technique for seasonal forecasts. J. Climate, 16, 38343840, doi:10.1175/1520-0442(2003)016<3834:IOTMST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2429 803 209
PDF Downloads 667 127 11