Contribution of Dynamic Vegetation Phenology to Decadal Climate Predictability

Martina Weiss * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Martina Weiss in
Current site
Google Scholar
PubMed
Close
,
Paul A. Miller Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Paul A. Miller in
Current site
Google Scholar
PubMed
Close
,
Bart J. J. M. van den Hurk * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Bart J. J. M. van den Hurk in
Current site
Google Scholar
PubMed
Close
,
Twan van Noije * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Twan van Noije in
Current site
Google Scholar
PubMed
Close
,
Simona Ştefănescu ECMWF, Reading, United Kingdom

Search for other papers by Simona Ştefănescu in
Current site
Google Scholar
PubMed
Close
,
Reindert Haarsma * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Reindert Haarsma in
Current site
Google Scholar
PubMed
Close
,
Lambertus H. van Ulft * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Lambertus H. van Ulft in
Current site
Google Scholar
PubMed
Close
,
Wilco Hazeleger Royal Netherlands Meteorological Institute, De Bilt, and Wageningen University, Wageningen, Netherlands

Search for other papers by Wilco Hazeleger in
Current site
Google Scholar
PubMed
Close
,
Philippe Le Sager * Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Philippe Le Sager in
Current site
Google Scholar
PubMed
Close
,
Benjamin Smith Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Benjamin Smith in
Current site
Google Scholar
PubMed
Close
, and
Guy Schurgers Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Guy Schurgers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the impact of coupling and initializing the leaf area index from the dynamic vegetation model Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) is analyzed on skill of decadal predictions in the fully coupled atmosphere–land–ocean–sea ice model, the European Consortium Earth System Model (EC-Earth). Similar to the impact of initializing the model with the observed oceanic state, initializing the leaf area index (LAI) fields obtained from an offline LPJ-GUESS simulation forced by the observed atmospheric state leads to a systematic drift. A different treatment of the water and soil moisture budget in LPJ-GUESS is a likely cause of this drift. The coupled system reduces the cold bias of the reference model over land by reducing LAI (and the associated evaporative cooling), particularly outside the growing season. The coupling with the interactive vegetation module implies more degrees of freedom in the coupled model, which generates more noise that can mask a portion of the extra signal that is generated. The forecast reliability improves marginally, particularly early in the forecast. Ranked probability skill scores are also improved slightly in most areas analyzed, but the signal is not fully coherent over the forecast interval because of the relatively low number of ensemble members. Methods to remove the LAI drift and allow coupling of other variables probably need to be implemented before significant forecast skill can be expected.

Corresponding author address: Bart van den Hurk, Climate Research, KNMI, P.O. Box 201, De Bilt 3730AE, Netherlands. E-mail: hurkvd@knmi.nl

Abstract

In this study, the impact of coupling and initializing the leaf area index from the dynamic vegetation model Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) is analyzed on skill of decadal predictions in the fully coupled atmosphere–land–ocean–sea ice model, the European Consortium Earth System Model (EC-Earth). Similar to the impact of initializing the model with the observed oceanic state, initializing the leaf area index (LAI) fields obtained from an offline LPJ-GUESS simulation forced by the observed atmospheric state leads to a systematic drift. A different treatment of the water and soil moisture budget in LPJ-GUESS is a likely cause of this drift. The coupled system reduces the cold bias of the reference model over land by reducing LAI (and the associated evaporative cooling), particularly outside the growing season. The coupling with the interactive vegetation module implies more degrees of freedom in the coupled model, which generates more noise that can mask a portion of the extra signal that is generated. The forecast reliability improves marginally, particularly early in the forecast. Ranked probability skill scores are also improved slightly in most areas analyzed, but the signal is not fully coherent over the forecast interval because of the relatively low number of ensemble members. Methods to remove the LAI drift and allow coupling of other variables probably need to be implemented before significant forecast skill can be expected.

Corresponding author address: Bart van den Hurk, Climate Research, KNMI, P.O. Box 201, De Bilt 3730AE, Netherlands. E-mail: hurkvd@knmi.nl
Save
  • Ahlström, A., P. A. Miller, and B. Smith, 2012: Too early to infer a global NPP decline since 2000. Geophys. Res. Lett., 39, L15403, doi:10.1029/2012GL052336.

    • Search Google Scholar
    • Export Citation
  • Arora, V., 2002: Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys.,40, 1006, doi:10.1029/2001RG000103.

    • Search Google Scholar
    • Export Citation
  • Asner, G. P., J. M. Scurlock, and J. A. Hicke, 2003: Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecol. Biogeogr., 12, 191205, doi:10.1046/j.1466-822X.2003.00026.x.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2012: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteo. Soc.,139, 1132–1161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate,23, 6292–6311, doi:10.1175/2010JCLI3678.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight, M. Latif, and A. Rosati, 2012: Systematic estimates of initial-value decadal predictability for six AOGCMS. J. Climate, 25, 18271846, doi:10.1175/JCLI-D-11-00227.1.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Caldararu, S., P. Palmer, and D. Purves, 2012: Inferring Amazon leaf demography from satellite observations of leaf area index. Biogeosciences, 9, 13891404, doi:10.5194/bg-9-1389-2012.

    • Search Google Scholar
    • Export Citation
  • Conil, S., H. Douville, and S. Tyteca, 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, doi:10.1007/s00382-006-0172-2.

    • Search Google Scholar
    • Export Citation
  • Corti, S., A. Weisheimer, T. N. Palmer, F. J. Doblas-Reyes, and L. Magnusson, 2012: Reliability of decadal predictions. Geophys. Res. Lett.,39, L21712, doi:10.1029/2012GL053354.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delire, C., N. de Noblet-Ducoudré, A. Sima, and I. Gouirand, 2011: Vegetation dynamics enhancing long-term climate variability confirmed by two models. J. Climate, 24, 22382257, doi:10.1175/2010JCLI3664.1.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn.,34, 797–818, doi:10.1007/s00382-008-0508-1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., 2014: Fair scores for ensemble forecasts. Quart. J. Roy. Meteor. Soc., 140, 19171923, doi:10.1002/qj.2270.

  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., J. W. Hurrell, B. P. Kirtman, J. Murphy, T. Stockdale, and C. Vera, 2012: Two time scales for the price of one (almost). Bull. Amer. Meteor. Soc., 93, 621629, doi:10.1175/BAMS-D-11-00220.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H. and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res.,104, 23 337–23 355, doi:10.1029/1999JC900215.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., T. C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bull. Amer. Meteor. Soc., 83, 683698, doi:10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363, doi:10.1175/2010BAMS2877.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2012: EC-Earth v2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-Burillo, F. J. Doblas-Reyes, K. Wyser, and M. Caian, 2013a: Multiyear climate predictions using two initialization strategies. Geophys. Res. Lett.,40, 1794–1798, doi:10.1002/grl.50355.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2013b: Predicting multiyear North Atlantic Ocean variability. J. Geophys. Res. Oceans, 118, 1087–1098, doi:10.1002/jgrc.20117.

    • Search Google Scholar
    • Export Citation
  • Hickler, T., and Coauthors, 2012: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecol. Biogeogr., 21, 5063, doi:10.1111/j.1466-8238.2010.00613.x.

    • Search Google Scholar
    • Export Citation
  • Ho, C. K., E. Hawkins, L. Sharey, and F. M. Underwood, 2013: Statistical decadal predictions for sea surface temperatures: A benchmark for dynamical GCM predictions. Climate Dyn. ,41,917935, doi:10.1007/s00382-012-1531-9.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc.,90, 1819–1832, doi:10.1175/2009bams2752.1.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Köppen, W., 1884: Die warmezonen der erde, nach der dauer der heissen, gemassigten und kalten zeit und nach der wirkung der warme auf die organische welt betrachtet (The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world). Meteor. Z.,1, 215–226.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325, doi:10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace 27, 217 pp.

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and C. Tebaldi, 2010: Decadal prediction in the Pacific region. J. Climate, 23, 29592973, doi:10.1175/2010JCLI3296.1.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837, doi:10.1073/pnas.0906531107.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Müller, W., C. Appenzeller, F. Doblas-Reyes, and M. Liniger, 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J. Climate, 18, 15131523, doi:10.1175/JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biol., 19, 21172132, doi:10.1111/gcb.12187.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change,2, 828–850, doi:10.1002/wcc.144.

  • Pohlmann, H., J. H. Jungclaus, A. Kohl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., S. Gollvik, and A. Ullerstig, 2006: The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). Swedish Meteorological and Hydrological Institute 122, 38 pp.

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185, doi:10.1046/j.1365-2486.2003.00569.x.

    • Search Google Scholar
    • Export Citation
  • Smith, B., I. C. Prentice, and M. T. Sykes, 2001: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr., 10, 621637, doi:10.1046/j.1466-822X.2001.00256.x.

    • Search Google Scholar
    • Export Citation
  • Smith, B., P. Samuelsson, A. Wramneby, and M. Rummukainen, 2011: A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus, 63A, 87106, doi:10.1111/j.1600-0870.2010.00477.x.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317,796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and S. I. Seneviratne, 2008: Contrasting spectral changes limit albedo impact on land-atmosphere coupling during the 2003 European heat wave. Geophys. Res. Lett., 35, L03401, doi:10.1029/2007GL032778.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc.,131, 2961–3012, doi:10.1256/qj.04.176.

  • Van den Hurk, B. J. J. M., P. Viterbo, and S. Los, 2003: Impact of leaf area index seasonality on annual land surface evaporation in a global circulation model. J. Geophys. Res., 108, 41914199, doi:10.1029/2002JD002846.

    • Search Google Scholar
    • Export Citation
  • Van der Molen, M. K., B. J. J. M. van den Hurk, and W. Hazeleger, 2011: A dampened land use change climate response towards the tropics. Climate Dyn.,37, 2035–2043, doi:10.1007/s00382-011-1018-0.

  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Weaver, A., C. Deltel, E. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance operator for variational ocean data assimilation. Quart. J. Roy. Meteor. Soc.,131, 3605–3625, doi:10.1256/qj.05.119.

  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, doi:10.1175/MWR3280.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, M., B. van den Hurk, R. Haarsma, and W. Hazeleger, 2012: Impact of vegetation variability on potential predictability and skill of EC-Earth simulations. Climate Dyn., 39, 27332746, doi:10.1007/s00382-012-1572-0.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., W. Hazeleger, S. Drijfhout, G.-J. van Oldenborgh, and V. Guemas, 2013: Decadal predictability of the North Atlantic subpolar gyre. Geophys. Res. Lett., 40, 30803084, doi:10.1002/grl.50585.

    • Search Google Scholar
    • Export Citation
  • Wramneby, A., B. Smith, and P. Samuelsson, 2010: Hotspots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J. Geophys. Res., 115, D21119, doi:10.1029/2010JD014307.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1314 793 185
PDF Downloads 380 63 3