Projections of the Tropical Atlantic Vertical Wind Shear and Its Relationship with ENSO in SP-CCSM4

Xiaojie Zhu Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Xiaojie Zhu in
Current site
Google Scholar
PubMed
Close
,
Li Xu Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Li Xu in
Current site
Google Scholar
PubMed
Close
, and
Cristiana Stan Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The vertical wind shear over the tropical Atlantic Ocean and its relationship with ENSO are analyzed in the superparameterized Community Climate System Model, version 4 (SP-CCSM4) and in the conventional CCSM4. The climatology of vertical wind shear over the tropical Atlantic and the ENSO–shear relationship are well simulated in the control runs of SP-CCSM4 and CCSM4. However, because of different representations of cloud processes, in a warmer climate such as the representative concentration pathway 8.5 (RCP8.5) scenario, SP-CCSM4 projects increased mean westerlies at 200 hPa during July through October (JASO), whereas CCSM4 projects decreased mean westerlies at 200 hPa over the equatorial Atlantic. The different changes in the upper-level wind further contribute to different projection of JASO mean vertical wind shear over the equatorial Atlantic. In the RCP8.5 scenario, when excluding the linear trend, projection of the ENSO–shear relationships by SP-CCSM4 retains similar features as in the observed current climate, whereas the ENSO–shear relationship projected by CCSM4 indicates an increase in the vertical wind shear dominating the tropical Atlantic during El Niño events. The difference in projection of ENSO–shear relationship is, to a certain extent, related to the different response of the tropical Atlantic SST to ENSO. Analysis of the climate change projection of Walker circulation, cloud cover, and convective activity illustrates that superparameterization simulates a stronger suppression of African convection than the conventional parameterization of moist processes. The weak convective activity diminishes the divergent wind associated with the vertical motion, which contributes to increased westerlies projected in SP-CCSM4.

Corresponding author address: Xiaojie Zhu, Center for Land–Ocean–Atmosphere Studies, 280 Research Hall, Mail Stop 6C5, George Mason University, 4400 University Dr., Fairfax, VA 22030. E-mail: xzhu@cola.iges.org

Abstract

The vertical wind shear over the tropical Atlantic Ocean and its relationship with ENSO are analyzed in the superparameterized Community Climate System Model, version 4 (SP-CCSM4) and in the conventional CCSM4. The climatology of vertical wind shear over the tropical Atlantic and the ENSO–shear relationship are well simulated in the control runs of SP-CCSM4 and CCSM4. However, because of different representations of cloud processes, in a warmer climate such as the representative concentration pathway 8.5 (RCP8.5) scenario, SP-CCSM4 projects increased mean westerlies at 200 hPa during July through October (JASO), whereas CCSM4 projects decreased mean westerlies at 200 hPa over the equatorial Atlantic. The different changes in the upper-level wind further contribute to different projection of JASO mean vertical wind shear over the equatorial Atlantic. In the RCP8.5 scenario, when excluding the linear trend, projection of the ENSO–shear relationships by SP-CCSM4 retains similar features as in the observed current climate, whereas the ENSO–shear relationship projected by CCSM4 indicates an increase in the vertical wind shear dominating the tropical Atlantic during El Niño events. The difference in projection of ENSO–shear relationship is, to a certain extent, related to the different response of the tropical Atlantic SST to ENSO. Analysis of the climate change projection of Walker circulation, cloud cover, and convective activity illustrates that superparameterization simulates a stronger suppression of African convection than the conventional parameterization of moist processes. The weak convective activity diminishes the divergent wind associated with the vertical motion, which contributes to increased westerlies projected in SP-CCSM4.

Corresponding author address: Xiaojie Zhu, Center for Land–Ocean–Atmosphere Studies, 280 Research Hall, Mail Stop 6C5, George Mason University, 4400 University Dr., Fairfax, VA 22030. E-mail: xzhu@cola.iges.org
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of cumulus cloud ensembles with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cornejo-Garrido, A. G., and P. H. Stone, 1977: On the heat balance of the Walker circulation. J. Atmos. Sci., 34, 11551162, doi:10.1175/1520-0469(1977)034<1155:OTHBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, J. L. Kinter III, and M. Khairoutdinov, 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 51345156, doi:10.1175/2011JCLI4202.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992, doi:10.1175/JCLI-D-12-00191.1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and F. Giorgi, 2012: Climate Change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 114, 813822, doi:10.1007/s10584-012-0570-x.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., A. J. Majda, and B. Khouider, 2013: Stochastic and deterministic multicloud parameterizations for tropical convection. Climate Dyn., 41, 15271551, doi:10.1007/s00382-013-1678-z.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, doi:10.1029/2001GL013552.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variation during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, and R. C. Somerville, 2014: The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. J. Adv. Model. Earth Sys., doi:10.1002/2014MS000306, in press.

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climate Dyn., 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate model. Philos. Trans. Roy. Soc. London, A366, 25912604, doi:10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31, 587598, doi:10.1007/s00382-008-0364-z.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., and D. J. Vimont, 2011: Variability of the Atlantic meridional mode during the Atlantic hurricane season. J. Climate, 24, 14091424, doi:10.1175/2010JCLI3549.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., 2012: Is cumulus convection the concert master of tropical cyclone activity in the Atlantic? Geophys. Res. Lett., 39, L19716, doi:10.1029/2012GL053449.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and L. Xu, 2014: Climate simulations and projections with a super-parameterized climate model. Environ. Modell. Software, 60, 134–152, doi:10.1016/j.envsoft.2014.06.013.

    • Search Google Scholar
    • Export Citation
  • Stan, C., M. Khairoutdinov, C. A. DeMott, V. Krishnamurthy, D. M. Straus, D. A. Randall, J. L. Kinter III, and J. Shukla, 2010: An ocean–atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, doi:10.1029/2009GL040822.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, doi:10.1175/JCLI-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atlantic climate variability and its associated atmospheric circulation cells. J. Climate, 15, 15161536, doi:10.1175/1520-0442(2002)015<1516:ACVAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. Bradley, Eds., Advances in Global Change Research Series, Vol. 21, Springer, 173–202.

  • Wang, C., and P. C. Fiedler, 2006: ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 239266, doi:10.1016/j.pocean.2006.03.004.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and D. B. Enfield, 2007: Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J. Climate, 20, 50215040, doi:10.1175/JCLI4304.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., R. Saravanan, and P. Chang, 2012: Influence of mean flow on the ENSO–vertical wind shear relationship over the northern tropical Atlantic. J. Climate, 25, 858864, doi:10.1175/JCLI-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 478 268 49
PDF Downloads 168 32 3