Seasonal Tropical Cyclone Predictions Using Optimized Combinations of ENSO Regions: Application to the Coral Sea Basin

Hamish A. Ramsay School of Earth, Atmosphere and Environment and ARC Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Hamish A. Ramsay in
Current site
Google Scholar
PubMed
Close
,
Michael B. Richman School of Meteorology and Cooperative Institute for Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael B. Richman in
Current site
Google Scholar
PubMed
Close
, and
Lance M. Leslie School of Meteorology and Cooperative Institute for Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Lance M. Leslie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines combining ENSO sea surface temperature (SST) regions for seasonal prediction of Coral Sea tropical cyclone (TC) frequency. The Coral Sea averages ~4 TCs per season, but is characterized by strong interannual variability, with 1–9 TCs per season, over the period 1977–2012. A wavelet analysis confirms that ENSO is a key contributor to Coral Sea TC count (TCC) variability. Motivated by the impact of El Niño Modoki on regional climate anomalies, a suite of 38 linear models is constructed and assessed on its ability to predict Coral Sea seasonal TCC. Seasonal predictions of TCC are generated by a leave-one-out cross validation (LOOCV). An important finding is that models made up of multiple tropical Pacific SST regions, such as those that comprise the El Niño Modoki Index (EMI) or the Trans-Niño Index (TNI), perform considerably better than models comprising only single regions, such as Niño-3.4 or Niño-4. Moreover, enhanced (suppressed) TC activity is expected in the Coral Sea when the central Pacific is anomalously cool (warm) and the eastern and western Pacific are anomalously warm (cool) during austral winter. The best cross-validated model has persistent and statistically significantly high correlations with TCC (r > 0.5) at lead times of ~6 months prior to the mean onset of the Coral Sea TC season, whereas correlations based heavily on the widely used Niño-3.4 region are not statistically significant or meaningful (r = 0.09) for the same lead times. Of the 38 models assessed, several optimized forms of the EMI and of the TNI perform best.

Corresponding author address: Hamish Ramsay, School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia. E-mail: hamish.ramsay@monash.edu

Abstract

This study examines combining ENSO sea surface temperature (SST) regions for seasonal prediction of Coral Sea tropical cyclone (TC) frequency. The Coral Sea averages ~4 TCs per season, but is characterized by strong interannual variability, with 1–9 TCs per season, over the period 1977–2012. A wavelet analysis confirms that ENSO is a key contributor to Coral Sea TC count (TCC) variability. Motivated by the impact of El Niño Modoki on regional climate anomalies, a suite of 38 linear models is constructed and assessed on its ability to predict Coral Sea seasonal TCC. Seasonal predictions of TCC are generated by a leave-one-out cross validation (LOOCV). An important finding is that models made up of multiple tropical Pacific SST regions, such as those that comprise the El Niño Modoki Index (EMI) or the Trans-Niño Index (TNI), perform considerably better than models comprising only single regions, such as Niño-3.4 or Niño-4. Moreover, enhanced (suppressed) TC activity is expected in the Coral Sea when the central Pacific is anomalously cool (warm) and the eastern and western Pacific are anomalously warm (cool) during austral winter. The best cross-validated model has persistent and statistically significantly high correlations with TCC (r > 0.5) at lead times of ~6 months prior to the mean onset of the Coral Sea TC season, whereas correlations based heavily on the widely used Niño-3.4 region are not statistically significant or meaningful (r = 0.09) for the same lead times. Of the 38 models assessed, several optimized forms of the EMI and of the TNI perform best.

Corresponding author address: Hamish Ramsay, School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia. E-mail: hamish.ramsay@monash.edu
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Basher, R. E., and X. Zheng, 1995: Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. J. Climate, 8, 12491260, doi:10.1175/1520-0442(1995)008<1249:TCITSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buckley, B. W., L. M. Leslie, and M. S. Speer, 2003: The impact of observational technology on climate database quality: Tropical cyclones in the Tasman Sea. J. Climate, 16, 26402645, doi:10.1175/1520-0442(2003)016<2640:TIOOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, doi:10.1029/2009GL037885.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, doi:10.1175/2009JCLI2880.1.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., K. J. E. Walsh, and J. C. L. Chan, 2010: A Bayesian regression approach to seasonal prediction of tropical cyclones affecting the Fiji region. J. Climate, 23, 34253445, doi:10.1175/2010JCLI3521.1.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., J. McBride, K. Tory, M. Wheeler, and K. J. E. Walsh, 2013a: Impact of different ENSO regimes on southwest Pacific tropical cyclones. J. Climate, 26, 600608, doi:10.1175/JCLI-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., K. Tory, J. McBride, M. Wheeler, R. Dare, and K. J. E. Walsh, 2013b: The different impact of positive-neutral and negative-neutral ENSO regimes on Australian tropical cyclones. J. Climate, 26, 80088016, doi:10.1175/JCLI-D-12-00769.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi:10.1029/2009GL041708.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., A. M. Lorrey, K. R. Knapp, and D. H. Levinson, 2012: Development of an enhanced tropical cyclone tracks database for the southwest Pacific from 1840 to 2010. Int. J. Climatol., 32, 22402250, doi:10.1002/joc.2412.

    • Search Google Scholar
    • Export Citation
  • Done, T. J., 1992: Effects of tropical cyclone waves on ecological and geomorphological structures on the Great Barrier Reef. Cont. Shelf Res., 12, 859872, doi:10.1016/0278-4343(92)90048-O.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., L. Qi, D. Jones, H. Ramsay, R. Fawcett, and Y. Kuleshov, 2012: Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Niño–Southern Oscillation. J. Climate, 25, 61086122, doi:10.1175/JCLI-D-11-00647.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Monogr. Stat. Appl. Probab., Vol. 57, Chapman and Hall, 456 pp.

  • Evans, J. L., and R. J. Allan, 1992: El Niño/Southern Oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australasian region. Int. J. Climatol., 12, 611623, doi:10.1002/joc.3370120607.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influence of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., S. A. Stroud, M. McCormack, and S. West, 2008: A review of historical tropical cyclone intensity in northwestern Australia and implications for climate change trend analysis. Aust. Meteor. Mag., 57, 121141.

    • Search Google Scholar
    • Export Citation
  • Hastings, P. A., 1990: Southern Oscillation influences on tropical cyclone activity in the Australian/southwest Pacific region. Int. J. Climatol., 10, 291298, doi:10.1002/joc.3370100306.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming events on North Atlantic tropical cyclone. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, doi:10.1175/2010JCLI3939.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: A simplified Atlantic basic seasonal hurricane prediction scheme from 1 August. Geophys. Res. Lett., 38, L16710, doi:10.1029/2011GL048603.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., L. Qi, R. Fawcett, and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, doi:10.1029/2007GL032983.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., R. Fawcett, L. Qi, B. Trewin, D. Jones, J. McBride, and H. Ramsay, 2010: Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J. Geophys. Res., 115, D01101, doi:10.1029/2009JD012372.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Larson, S., S.-K. Lee, C. Wang, E.-S. Chung, and D. Enfield, 2012: Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys. Res. Lett., 39, L14706, doi:10.1029/2012GL052595.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2012: Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. Int. J. Climatol., 32, 190202, doi:10.1002/joc.2259.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1979: A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Wea. Rev., 107, 12211224, doi:10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The Southern Oscillation, sea-surface temperature, and internannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661670, doi:10.1002/joc.3370040609.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1985: Predictability of interannual variations in Australian seasonal tropical cyclone activity. Mon. Wea. Rev., 113, 11441149, doi:10.1175/1520-0493(1985)113<1144:POIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., C. W. Landsea, and J. Gill, 1998: Recent trends in Australian tropical cyclone activity. Meteor. Atmos. Phys., 65, 197205, doi:10.1007/BF01030788.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., L. M. Leslie, P. J. Lamb, M. B. Richman, and M. Leplastrier, 2008: Interannual variability of tropical cyclones in the Australian region: Role of large-scale environment. J. Climate, 21, 10831103, doi:10.1175/2007JCLI1970.1.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dyn., 39, 897917, doi:10.1007/s00382-011-1225-8.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Revell, C. G., and S. W. Goulter, 1986a: South Pacific tropical cyclones and the Southern Oscillation. Mon. Wea. Rev., 114, 11381145, doi:10.1175/1520-0493(1986)114<1138:SPTCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Revell, C. G., and S. W. Goulter, 1986b: Lagged relations between the Southern Oscillation and numbers of tropical cyclones in the South Pacific region. Mon. Wea. Rev., 114, 26692670, doi:10.1175/1520-0493(1986)114<2669:LRBTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, doi:10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Solow, A., and N. Nicholls, 1990: The relationship between the Southern Oscillation and tropical cyclone frequency in the Australian region. J. Climate, 3, 10971101, doi:10.1175/1520-0442(1990)003<1097:TRBTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22, 31673174, doi:10.1175/2008JCLI2589.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, doi:10.1002/qj.49710243310.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, doi:10.1007/s00382-009-0716-3.

    • Search Google Scholar
    • Export Citation
  • Werner, A., and N. J. Holbrook, 2011: A Bayesian forecast model for Australian region tropical cyclone formation. J. Climate, 24, 61146131, doi:10.1175/2011JCLI4231.1.

    • Search Google Scholar
    • Export Citation
  • Wijnands, J. S., K. Shelton, and Y. Kuleshov, 2014: Improving the operational methodology of tropical cyclone seasonal prediction in the Australian and the South Pacific Ocean regions. Adv. Meteor., 2014, 838746, doi:10.1155/2014/838746.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Yu, J. Y., and H. Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1252 759 168
PDF Downloads 173 43 7