Estimating the Contribution of Sea Ice Response to Climate Sensitivity in a Climate Model

Ken Caldeira Department of Global Ecology, Carnegie Institution for Science, Stanford, California

Search for other papers by Ken Caldeira in
Current site
Google Scholar
PubMed
Close
and
Ivana Cvijanovic Department of Global Ecology, Carnegie Institution for Science, Stanford, California, and Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ivana Cvijanovic in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of sea ice to climate change affects Earth’s radiative properties in ways that contribute to yet more climate change. Here, a configuration of the Community Earth System Model, version 1.0.4 (CESM 1.0.4), with a slab ocean model and a thermodynamic–dynamic sea ice model is used to investigate the overall contribution to climate sensitivity of feedbacks associated with the sea ice loss. In simulations in which sea ice is not present and ocean temperatures are allowed to fall below freezing, the climate feedback parameter averages ~1.31 W m−2 K−1; the value obtained for control simulations with active sea ice is ~1.05 W m−2 K−1, indicating that, in this configuration of CESM1.0.4, sea ice response accounts for ~20% of climate sensitivity to an imposed change in radiative forcing. In this model, the effect of sea ice response on the longwave climate feedback parameter is nearly half as important as its effect on the shortwave climate feedback parameter. Further, it is shown that the strength of the overall sea ice feedback can be related to 1) the sensitivity of sea ice area to changes in temperature and 2) the sensitivity of sea ice radiative forcing to changes in sea ice area. An alternative method of disabling sea ice response leads to similar conclusions. It is estimated that the presence of sea ice in the preindustrial control simulation has a climate effect equivalent to ~3 W m−2 of radiative forcing.

Denotes Open Access content.

Corresponding author address: Ken Caldeira, Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305. E-mail: kcaldeira@carnegiescience.edu

Abstract

The response of sea ice to climate change affects Earth’s radiative properties in ways that contribute to yet more climate change. Here, a configuration of the Community Earth System Model, version 1.0.4 (CESM 1.0.4), with a slab ocean model and a thermodynamic–dynamic sea ice model is used to investigate the overall contribution to climate sensitivity of feedbacks associated with the sea ice loss. In simulations in which sea ice is not present and ocean temperatures are allowed to fall below freezing, the climate feedback parameter averages ~1.31 W m−2 K−1; the value obtained for control simulations with active sea ice is ~1.05 W m−2 K−1, indicating that, in this configuration of CESM1.0.4, sea ice response accounts for ~20% of climate sensitivity to an imposed change in radiative forcing. In this model, the effect of sea ice response on the longwave climate feedback parameter is nearly half as important as its effect on the shortwave climate feedback parameter. Further, it is shown that the strength of the overall sea ice feedback can be related to 1) the sensitivity of sea ice area to changes in temperature and 2) the sensitivity of sea ice radiative forcing to changes in sea ice area. An alternative method of disabling sea ice response leads to similar conclusions. It is estimated that the presence of sea ice in the preindustrial control simulation has a climate effect equivalent to ~3 W m−2 of radiative forcing.

Denotes Open Access content.

Corresponding author address: Ken Caldeira, Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305. E-mail: kcaldeira@carnegiescience.edu
Save
  • Alexeev, V. A., and C. H. Jackson, 2013: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533–547, doi:10.1007/s00382-012-1601-z.

    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in ghost forcing experiments without sea ice feedbacks. Climate Dyn., 24, 655–666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. Holland, M. Eby, and A. J. Weaver, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463, doi:10.1029/1999JC000113.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19, 24372450, doi:10.1175/JCLI3756.1.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695, doi:10.1175/2009JCLI2885.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2005: Dynamical amplification of polar warming. Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL024481.

  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609632, doi:10.1175/JCLI4026.1.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, doi:10.1007/s00382-003-0310-z.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., and P. M. Forster, 2014: Comparison of surface albedo feedback in climate models and observations. Geophys. Res. Lett., 41, 17171723, doi:10.1002/2014GL059280.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499, doi:10.1175/2008JCLI2596.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovic, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci., 4, 151155, doi:10.1038/ngeo1062.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104, 23 33723 355, doi:10.1029/1999JC900215.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53–56, doi:10.1038/nature06502.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Headrick, T. C., 2010: Statistical Simulation: Power Method Polynomials and Other Transformations. Chapman & Hall/CRC, 174 pp.

  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, and A. J. Weaver, 2001: The influence of sea ice physics on simulations of climate change. J. Geophys. Res., 106, 19 639–19 655, doi:10.1029/2000JC000651.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414, doi:10.1175/JCLI3751.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., 2011: Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic. J. Geophys. Res., 116, D16102, doi:10.1029/2011JD015804.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep LA-CC-06-012, 76 pp.

  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modeling climate change: An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94, 8609–8622, doi:10.1029/JD094iD06p08609.

    • Search Google Scholar
    • Export Citation
  • Isobe, T., E. D. Feigelson, M. G. Akritas, and G. J. Babu, 1990: Linear regression in astronomy. Astrophys. J., 364, 104113, doi:10.1086/169390.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744–748, doi:10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450, doi:10.1175/JCLI-D-11-00622.1.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305–317, doi:10.1007/s00382-006-0221-x.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst.,3, M03001, doi:10.1029/2011MS000045.

  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, doi:10.1175/2010JCLI3713.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1990: CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Climatic Change, 16, 283–306, doi:10.1007/BF00144505.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 1–6, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Impacts of the newly open Arctic Sea. Polar Res., 30, 15787, doi:10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T., J. Boé, A. Hall, and E. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, doi:10.1007/s00382-010-0756-8.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice–albedo feedback. Geophys. Res. Lett., 34, L19505, doi:10.1029/2007GL031480.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2005: One more step toward a warmer Arctic. Geophys. Res. Lett., 32, L17605, doi:10.1029/2005GL023740.

  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1995: The role of sea ice in 2×CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent. J. Climate, 8, 449463, doi:10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1997: The role of sea ice in 2×CO2 climate model sensitivity: Part II: Hemispheric dependencies. Geophys. Res. Lett., 24, 14911494, doi:10.1029/97GL01433.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and midlatitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19, 359365, doi:10.1175/JCLI3624.1.

  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934, doi:10.1175/2011JCLI4146.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1417 913 265
PDF Downloads 343 82 0