MODIS Consistent Vegetation Parameter Specifications and Their Impacts on Regional Climate Simulations

Min Xu Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Min Xu in
Current site
Google Scholar
PubMed
Close
,
Xin-Zhong Liang Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
,
Arthur Samel Department of Geography, Bowling Green State University, Bowling Green, Ohio

Search for other papers by Arthur Samel in
Current site
Google Scholar
PubMed
Close
, and
Wei Gao UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado

Search for other papers by Wei Gao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A consistent set of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation parameters, including leaf and stem area index (LAI and SAI, respectively), land-cover category (LCC), fractional vegetation cover (FVC), and albedo parameterization are developed, and their impacts on North American regional climate are evaluated based on 10-yr Climate–Weather and Research Forecasting Model (CWRF) simulations. As compared with the previous Advanced Very High Resolution Radiometer (AVHRR) set, MODIS LCC increases grassland and cropland fractions in the central Great Plains and Midwest, respectively. Evergreen needleleaf forest converts to mixed forest in the Southeast, and mixed forest converts to evergreen needleleaf in Canada. FVC decreases by 0.05–0.3 over the central Great Plains but increases by 0.1–0.35 over the northern Rocky Mountains, Canada, and the U.S. Southeast. MODIS LAI is less than AVHRR by 2–6, except in the central Great Plains, eastern Rocky Mountains, and central Mexico. LCC and FVC changes over the central Great Plains reduce CWRF warm biases by 0.71°C and wet biases by 0.36 mm day−1. Large LAI reductions cause latent and sensible heat fluxes to decrease by 0.78–5.81 and 0.91–6.54 W m−2, respectively. They also lessen cold biases over the Gulf States and Southeast and wet biases over the North American monsoon region and Canada during summer. In densely vegetated regions including eastern Canada, the Ohio Valley, and the mid-Atlantic region, spring and summer precipitation decreases and temperature increases result from LAI reductions that cause positive evapotranspiration–precipitation–soil moisture feedbacks. Conversely, precipitation and temperature decreases in sparely vegetated regions, such as the Great Plains, result from FVC reductions that cause negative albedo–evapotranspiration–precipitation–soil moisture feedbacks.

Corresponding author address: Dr. Xin-Zhong Liang, Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court, Suite 4001, College Park, MD 20740. E-mail: xliang@umd.edu

Abstract

A consistent set of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation parameters, including leaf and stem area index (LAI and SAI, respectively), land-cover category (LCC), fractional vegetation cover (FVC), and albedo parameterization are developed, and their impacts on North American regional climate are evaluated based on 10-yr Climate–Weather and Research Forecasting Model (CWRF) simulations. As compared with the previous Advanced Very High Resolution Radiometer (AVHRR) set, MODIS LCC increases grassland and cropland fractions in the central Great Plains and Midwest, respectively. Evergreen needleleaf forest converts to mixed forest in the Southeast, and mixed forest converts to evergreen needleleaf in Canada. FVC decreases by 0.05–0.3 over the central Great Plains but increases by 0.1–0.35 over the northern Rocky Mountains, Canada, and the U.S. Southeast. MODIS LAI is less than AVHRR by 2–6, except in the central Great Plains, eastern Rocky Mountains, and central Mexico. LCC and FVC changes over the central Great Plains reduce CWRF warm biases by 0.71°C and wet biases by 0.36 mm day−1. Large LAI reductions cause latent and sensible heat fluxes to decrease by 0.78–5.81 and 0.91–6.54 W m−2, respectively. They also lessen cold biases over the Gulf States and Southeast and wet biases over the North American monsoon region and Canada during summer. In densely vegetated regions including eastern Canada, the Ohio Valley, and the mid-Atlantic region, spring and summer precipitation decreases and temperature increases result from LAI reductions that cause positive evapotranspiration–precipitation–soil moisture feedbacks. Conversely, precipitation and temperature decreases in sparely vegetated regions, such as the Great Plains, result from FVC reductions that cause negative albedo–evapotranspiration–precipitation–soil moisture feedbacks.

Corresponding author address: Dr. Xin-Zhong Liang, Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court, Suite 4001, College Park, MD 20740. E-mail: xliang@umd.edu
Save
  • Baldocchi, D., 2008: “Breathing” of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot., 56, 1–26, doi:10.1071/BT07151.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834838, doi:10.1126/science.1184984.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. J. Climate, 11, 13071326, doi:10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochem. Cycles, 16, 1021, doi:10.1029/2000GB001360.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson, 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, doi:10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Buermann, W., J. Dong, X. Zeng, R. B. Myneni, and R. E. Dickinson, 2001: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. J. Climate, 14, 35363550, doi:10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and D. A. Ripley, 1997: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ., 62, 241252, doi:10.1016/S0034-4257(97)00104-1.

    • Search Google Scholar
    • Export Citation
  • Carroll, M. L., J. R. Townshend, C. M. DiMiceli, P. Noojipady, and R. A. Sohlberg, 2009: A new global raster water mask at 250 m resolution. Int. J. Digital Earth, 2, 291308, doi:10.1080/17538940902951401.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., and X.-Z. Liang, 2010: Improved terrestrial hydrologic representation in mesoscale land surface models. J. Hydrometeor., 11, 797809, doi:10.1175/2010JHM1221.1.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., P. Kumar, and X.-Z. Liang, 2007: Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res.,43, W04414, doi:10.1029/2006WR005134.

  • Choi, H. I., X.-Z. Liang, and P. Kumar, 2013: A conjunctive surface–subsurface flow representation for mesoscale land surface models. J. Hydrometeor., 14, 1421–1442, doi:10.1175/JHM-D-12-0168.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 40 pp.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 19, 56 pp

  • Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 22812299, doi:10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., M. I. Disney, T. Quaife, P. Lewis, and M. Williams, 2011: An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ., 115, 767780, doi:10.1016/j.rse.2010.11.004.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19, 23022324, doi:10.1175/JCLI3742.1.

    • Search Google Scholar
    • Export Citation
  • Fang, H., S. Wei, and S. Liang, 2012: Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ., 119, 4354, doi:10.1016/j.rse.2011.12.006.

    • Search Google Scholar
    • Export Citation
  • Fang, H., and Coauthors, 2013: Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosci., 118, 529548, doi:10.1002/jgrg.20051.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., B. Markham, D. G. Dye, W. Dulaney, and J. Yang, 1991: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer. Remote Sens. Environ., 35, 257277, doi:10.1016/0034-4257(91)90017-Z.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., 1999: On the use of long-term global data of land reflectances and vegetation indices derived from the Advanced Very High Resolution Radiometer. J. Geophys. Res., 104, 62416255, doi:10.1029/1998JD200106.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, M. Carroll, C. Dimiceli, and R. A. Sohlberg, 2003: Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact., 7, doi:10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and M. F. Wilson, 1983: Surface albedo data for climatic modeling. Rev. Geophys., 21, 17431778, doi:10.1029/RG021i008p01743.

    • Search Google Scholar
    • Export Citation
  • Hill, M. J., U. Senarath, A. Lee, M. Zeppel, J. M. Nightingale, R. J. Williams, and T. R. McVicar, 2006: Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ., 101, 495518, doi:10.1016/j.rse.2006.01.010.

    • Search Google Scholar
    • Export Citation
  • Holder, C., R. Boyles, A. Syed, D. Niyogi, and S. Raman, 2006: Comparison of collocated automated (NCECONet) and manual (COOP) climate observations in North Carolina. J. Atmos. Oceanic Technol., 23, 671682, doi:10.1175/JTECH1873.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Ke, Y., L. R. Leung, M. Huang, A. M. Coleman, H. Li, and M. S. Wigmosta, 2012: Development of high resolution land surface parameters for the Community Land Model. Geosci. Model Dev., 5, 13411362, doi:10.5194/gmd-5-1341-2012.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145160, doi:10.1007/s00382-007-0278-1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and F. Zhang, 2013: The cloud–aerosol–radiation (CAR) ensemble modeling system. Atmos. Chem. Phys., 13, 83358364, doi:10.5194/acp-13-8335-2013.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., K. E. Kunkel, and A. N. Samel, 2001: Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment. J. Climate, 14, 43634378, doi:10.1175/1520-0442(2001)014<4363:DOARCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, K. E. Kunkel, M. F. Ting, and J. X. L. Wang, 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103529, doi:10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., H. I. Choi, K. E. Kunkel, Y. Dai, E. Joseph, J. X. Wang, and P. Kumar, 2005a: Surface boundary conditions for mesoscale regional climate models. Earth Interact., 9, doi:10.1175/EI151.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2005b: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110, D11107, doi:10.1029/2004JD005579.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., M. Xu, J. Zhu, K. Kunkel, and J. X. L. Wang, 2005c: Development of the Regional Climate–Weather Research and Forecasting Model (CWRF): Treatment of topography. 2005 WRF/MM5 Users’ Workshop, Boulder, CO, NCAR, 9.3. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session9/3-Liang.pdf.]

  • Liang, X.-Z., M. Xu, W. Gao, K. R. Reddy, K. Kunkel, D. L. Schmoldt, and A. N. Samel, 2012a: A distributed cotton growth model developed from GOSSYM and its parameter determination. Agron. J., 104, 661674, doi:10.2134/agronj2011.0250.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., M. Xu, W. Gao, K. R. Reddy, K. Kunkel, D. L. Schmoldt, and A. N. Samel, 2012b: Physical modeling of U.S. cotton yields and climate stresses during 1979 to 2005. Agron. J., 104, 675683, doi:10.2134/agronj2011.0251.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012c: Regional Climate–Weather Research and Forecasting Model. Bull. Amer. Meteor. Soc., 93, 13631387, doi:10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Ling, T.-J., X.-Z. Liang, M. Xu, Z. Wang, and B. Wang, 2011: A multilevel ocean mixed-layer model for 2-dimension applications. Acta Oceanol. Sin., 33, 110.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. Liu, and J. M. Chen, 2012: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res., 117, G04003, doi:10.1029/2012JG002084.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., R. Ramakrishna, R. Nemani, and S. W. Running, 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 13801393, doi:10.1109/36.649788.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., J. Adegoke, A. Beltrán-Przekurat, C. A. Hiemstra, J. Lin, U. S. Nair, D. Niyogi, and T. E. Nobis, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B, 587601, doi:10.1111/j.1600-0889.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Strahler, A. H., and Coauthors, 1999: MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0, 53 pp. [Available online at modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf.]

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2004a: Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res., 109, D01103, doi:10.1029/2003JD003777.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., R. Dickinson, L. Zhou, R. Myneni, M. Friedl, C. Schaaf, M. Carroll, and F. Gao, 2004b: Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett., 31, L05504, doi:10.1029/2003GL019104.

    • Search Google Scholar
    • Export Citation
  • Tucker, C., J. Pinzon, M. Brown, D. Slayback, E. Pak, R. Mahoney, E. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, doi:10.1080/01431160500168686.

    • Search Google Scholar
    • Export Citation
  • Vermote, E. F., and N. Z. Saleous, 2006: Calibration of NOAA16 AVHRR over a desert site using MODIS data. Remote Sens. Environ., 105, 214220, doi:10.1016/j.rse.2006.06.015.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., J. Tenhunen, N. Q. Dinh, M. Reichstein, T. Vesala, and P. Keronen, 2004: Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sens. Environ., 93, 225237, doi:10.1016/j.rse.2004.07.006.

    • Search Google Scholar
    • Export Citation
  • Yang, W., and Coauthors, 2006: MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens., 44, 18851898, doi:10.1109/TGRS.2006.871215.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan, 2011: Reprocessing the MODIS leaf area index products for land surface and climate modelling. Remote Sens. Environ., 115, 11711187, doi:10.1016/j.rse.2011.01.001.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and X.-Z. , 2011: Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the contiguous United States at regional–local scales. J. Hydrometeor., 12, 579599, doi:10.1175/2010JHM1302.1.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two contrasting U.S. regions. J. Hydrometeor., 7, 10431060, doi:10.1175/JHM536.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., R. E. Dickinson, A. Walker, M. Shaikh, R. S. DeFries, and J. Qi, 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor., 39, 826839, doi:10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Shaikh, Y. Dai, R. E. Dickinson, and R. Myneni, 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15, 18321854, doi:10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., B. Anderson, M. Barlow, B. Tan, and R. B. Myneni, 2004: Climate-related vegetation characteristics derived from Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index and normalized difference vegetation index. J. Geophys. Res., 109, D20105, doi:10.1029/2004JD004720.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and Coauthors, 2013: The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens., 5, 24362450, doi:10.3390/rs5052436.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2013: Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens., 5, 927948, doi:10.3390/rs5020927.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1613 1164 301
PDF Downloads 327 61 5