Coupled Impacts of the Diurnal Cycle of Sea Surface Temperature on the Madden–Julian Oscillation

Hyodae Seo Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Hyodae Seo in
Current site
Google Scholar
PubMed
Close
,
Aneesh C. Subramanian Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Aneesh C. Subramanian in
Current site
Google Scholar
PubMed
Close
,
Arthur J. Miller Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Arthur J. Miller in
Current site
Google Scholar
PubMed
Close
, and
Nicholas R. Cavanaugh Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Nicholas R. Cavanaugh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study quantifies, from a systematic set of regional ocean–atmosphere coupled model simulations employing various coupling intervals, the effect of subdaily sea surface temperature (SST) variability on the onset and intensity of Madden–Julian oscillation (MJO) convection in the Indian Ocean. The primary effect of diurnal SST variation (dSST) is to raise time-mean SST and latent heat flux (LH) prior to deep convection. Diurnal SST variation also strengthens the diurnal moistening of the troposphere by collocating the diurnal peak in LH with those of SST. Both effects enhance the convection such that the total precipitation amount scales quasi-linearly with preconvection dSST and time-mean SST. A column-integrated moist static energy (MSE) budget analysis confirms the critical role of diurnal SST variability in the buildup of column MSE and the strength of MJO convection via stronger time-mean LH and diurnal moistening. Two complementary atmosphere-only simulations further elucidate the role of SST conditions in the predictive skill of MJO. The atmospheric model forced with the persistent initial SST, lacking enhanced preconvection warming and moistening, produces a weaker and delayed convection than the diurnally coupled run. The atmospheric model with prescribed daily-mean SST from the coupled run, while eliminating the delayed peak, continues to exhibit weaker convection due to the lack of strong moistening on a diurnal basis. The fact that time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection is consistent with previous studies that identified an improved representation of diurnal SST as a potential source of MJO predictability.

Corresponding author address: Hyodae Seo, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS#21, Woods Hole, MA 02543. E-mail: hseo@whoi.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

This study quantifies, from a systematic set of regional ocean–atmosphere coupled model simulations employing various coupling intervals, the effect of subdaily sea surface temperature (SST) variability on the onset and intensity of Madden–Julian oscillation (MJO) convection in the Indian Ocean. The primary effect of diurnal SST variation (dSST) is to raise time-mean SST and latent heat flux (LH) prior to deep convection. Diurnal SST variation also strengthens the diurnal moistening of the troposphere by collocating the diurnal peak in LH with those of SST. Both effects enhance the convection such that the total precipitation amount scales quasi-linearly with preconvection dSST and time-mean SST. A column-integrated moist static energy (MSE) budget analysis confirms the critical role of diurnal SST variability in the buildup of column MSE and the strength of MJO convection via stronger time-mean LH and diurnal moistening. Two complementary atmosphere-only simulations further elucidate the role of SST conditions in the predictive skill of MJO. The atmospheric model forced with the persistent initial SST, lacking enhanced preconvection warming and moistening, produces a weaker and delayed convection than the diurnally coupled run. The atmospheric model with prescribed daily-mean SST from the coupled run, while eliminating the delayed peak, continues to exhibit weaker convection due to the lack of strong moistening on a diurnal basis. The fact that time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection is consistent with previous studies that identified an improved representation of diurnal SST as a potential source of MJO predictability.

Corresponding author address: Hyodae Seo, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS#21, Woods Hole, MA 02543. E-mail: hseo@whoi.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, S. P., R. A. Weller, and R. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085, doi:10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, doi:10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., Y. N. Takayabu, T. Ushiyama, and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, doi:10.1175/2010MWR3249.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., S. Woolnough, J. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, doi:10.1175/JCLI3319.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., E. Guilyardi, G. Madec, J. Slingo, and S. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575590, doi:10.1007/s00382-007-0249-6.

    • Search Google Scholar
    • Export Citation
  • Bernie, D., E. Guilyardi, G. Madec, J. Slingo, S. Woolnough, and J. Cole, 2008: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dyn., 31, 909925, doi:10.1007/s00382-008-0429-z.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999–104606, Vol. 15, 38 pp.

  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, doi:10.1175/JCLI-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Godfrey, G. Wick, J. Edson, and G. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implication for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386, doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Wang, and S. Weaver, 2013: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258, doi:10.1175/2010BAMS2816.1.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, doi:10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., L. R. Leung, and J. Dudhia, 2011: Thermodynamics of the MJO in a regional model with constrained moisture. J. Atmos. Sci., 68, 19741989, doi:10.1175/2011JAS3592.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728, doi:10.1175/JPO2725.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastward surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, doi:10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. Schemm, 2000: Medium range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986, doi:10.1175/1520-0493(2000)128<0069:MRFEAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier, 193 pp.

  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 326, doi:10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, doi:10.1007/s10872-007-0063-0.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: The intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., P. M. Inness, H. Weller, and J. M. Slingo, 2008: The importance of high-frequency sea surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Climate, 21, 61196140, doi:10.1175/2008JCLI2329.1.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., S. J. Woolnough, H. Weller, and J. M. Slingo, 2011: The impact of finer-resolution air–sea coupling on the intraseasonal oscillation of the Indian monsoon. J. Climate, 24, 24512468, doi:10.1175/2010JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, R.-C. Lien, J. N. Moum, and J.-W. Wang, 2013: Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden–Julian oscillations. J. Geophys. Res. Oceans, 118, 49454964, doi:10.1002/jgrc.20395.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, doi:10.1175/MWR-D-13-00292.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation: A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 1–16.

  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling the tropical intraseasonal oscillation. J. Climate, 17, 43684386, doi:10.1175/JCLI-3212.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2 (5), doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., and S. A. Clough, 1997: On the extension of RRTM to the shortwave region. Proc. Sixth Atmospheric Measurement (ARM) Science Team Meeting, Washington, DC, U.S. Department of Energy, 223–226.

  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, doi:10.1175/BAMS-D-12-00225.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013a: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, doi:10.1016/j.dynatmoce.2013.04.001.

    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013b: Regional coupled ocean–atmosphere downscaling in the southeast Pacific: Impacts on upwelling, mesoscale air–sea fluxes, and ocean eddies. Ocean Dyn., 63, 463488, doi:10.1007/s10236-013-0608-2.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanisms of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, doi:10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, doi:10.1175/JAS-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., C. Zhang, J. Dudhia, and S. S. Chen, 2009: A numerical case study on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 66, 310331, doi:10.1175/2008JAS2701.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., C. Zhang, M. W. Moncrieff, J. Dudhia, J. M. Caron, L. R. Leung, and C. Bruyere, 2011: Role of the atmospheric mean state on the initiation of the Madden–Julian oscillation in a tropical channel model. Climate Dyn., 36, 161184, doi:10.1007/s00382-010-0859-2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., G. B. Raga, C. S. Bretherton, J. Molinari, C. Lopez-Carillo, and Z. Fuchs, 2003: Convective forcing in the intertropical convergence zone of the eastern Pacific. J. Atmos. Sci., 60, 20642082, doi:10.1175/1520-0469(2003)060<2064:CFITIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., and J. S. Godfrey, 2005: A diagnostic model of the diurnal cycle of sea surface temperature for use in coupled ocean–atmosphere models. J. Geophys. Res., 110, C11014, doi:10.1029/2005JC002975.

    • Search Google Scholar
    • Export Citation
  • Seo, H., and S.-P. Xie, 2011: Response and impact of equatorial ocean dynamics and tropical instability waves in the tropical Atlantic under global warming: A regional coupled downscaling study. J. Geophys. Res.,116, C03026, doi:10.1029/2010JC006670.

  • Seo, H., and S.-P. Xie, 2013: Impact of ocean warm layer thickness on the intensity of Hurricane Katrina in a regional coupled model. Meteor. Atmos. Phys., 122, 1932, doi:10.1007/s00703-013-0275-3.

    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, and A. J. Miller, 2006: Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate. Geophys. Res. Lett.,33, L09606, doi:10.1029/2005GL025651.

  • Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, and J. O. Roads, 2007a: Feedback of tropical-instability wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, doi:10.1175/JCLI4330.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007b: The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402, doi:10.1175/JCLI4016.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, and J. O. Roads, 2008a: Precipitation from African easterly waves in a coupled model of the tropical Atlantic. J. Climate, 21, 14171431, doi:10.1175/2007JCLI1906.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., R. Murtugudde, M. Jochum, and A. J. Miller, 2008b: Modeling of mesoscale coupled ocean–atmosphere interaction and its feedback to ocean in the western Arabian Sea. Ocean Modell., 25, 120131, doi:10.1016/j.ocemod.2008.07.003.

    • Search Google Scholar
    • Export Citation
  • Seo, H., S.-P. Xie, R. Murtugudde, M. Jochum, and A. J. Miller, 2009: Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Climate, 22, 65776596, doi:10.1175/2009JCLI2990.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System Model: The importance of stratiform heating. J. Climate, 23, 47704793, doi:10.1175/2010JCLI2983.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, doi:10.1175/JCLI3432.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11, 26682685, doi:10.1175/1520-0442(1998)011<2668:MLMOIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., T. Jensen, M. Flatau, and S. Chen, 2013: Surface wind and upper-ocean variability associated with the Madden–Julian oscillation simulated by the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 141, 22902307, doi:10.1175/MWR-D-12-00273.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp, doi:10.5065/D68S4MVH.

  • Slingo, J., P. Inness, R. Neale, S. Woolnough, and G.-Y. Yang, 2003: Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46, 139155, doi:10.4401/ag-3383.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intra-seasonal oscillations. Nat. Geosci., 1, 653657, doi:10.1038/ngeo312.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. S. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and the tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A. C., M. Jochum, A. J. Miller, R. Murtugudde, R. B. Neale, and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282, doi:10.1175/JCLI-D-11-00031.1.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, doi:10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and T. Jung, 2010: Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophys. Res. Lett., 37, L23805, doi:10.1029/2010GL045465.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden–Julian oscillation. J. Geophys. Res., 108, 3160, doi:10.1029/2002JC001620.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, doi:10.1175/2008JCLI2731.1.

  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific Ocean. J. Climate, 9, 17121730, doi:10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wedi, N., and P. K. Smolarkiewicz, 2010: A nonlinear perspective on the dynamics of the MJO: Idealized large-eddy simulations. J. Atmos. Sci., 67, 12021217, doi:10.1175/2009JAS3160.1.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, doi:10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal time scales. J. Climate, 13, 20862104, doi:10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127, 887907, doi:10.1002/qj.49712757310.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128, doi:10.1002/qj.4.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 2859–2877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., 1981: Effects of islands on equatorial waves. J. Geophys. Res., 86, 10 91310 920, doi:10.1029/JC086iC11p10913.

  • Yu, L., and R. A. Weller, 2007: Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) for the global ice-free oceans. Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. P. Anderson, 2003: Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60, 21962207, doi:10.1175/1520-0469(2003)060<2196:SOIPIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden–Julian oscillation by four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, doi:10.1007/s00382-006-0148-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. B. Neale, M. Jochum, and R. Murtugudde, 2012: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136, doi:10.1175/2011JCLI4059.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6300 4716 1550
PDF Downloads 901 177 19