Subtropical Cyclones over the Southwestern South Atlantic: Climatological Aspects and Case Study

Luiz Felippe Gozzo Department of Atmospheric Sciences, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Luiz Felippe Gozzo in
Current site
Google Scholar
PubMed
Close
,
Rosmeri P. da Rocha Department of Atmospheric Sciences, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Rosmeri P. da Rocha in
Current site
Google Scholar
PubMed
Close
,
Michelle S. Reboita Natural Resources Institute, Universidade de Itajuba, Minas Gerais, Brazil

Search for other papers by Michelle S. Reboita in
Current site
Google Scholar
PubMed
Close
, and
Shigetoshi Sugahara Instituto de Pesquisas Meteorologicas e Programa de Pos-Graduacao da Faculdade de Ciencias, UNESP, Bauru, Brazil

Search for other papers by Shigetoshi Sugahara in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hurricane Catarina (2004) and subtropical storm Anita (2010) called attention to the development of subtropical cyclones (SCs) over the South Atlantic basin. Besides strong and organized storms, a large number of weaker, shallower cyclones with both extratropical and tropical characteristics form in the region, impacting the South American coast. The main focus of this study is to simulate a climatology of subtropical cyclones and their synoptic pattern over the South Atlantic, proposing a broader definition of these systems. In addition, a case study is presented to discuss the main characteristics of one weak SC. The Interim ECMWF Re-Analysis (ERA-Interim) and NCEP–NCAR reanalysis are used to construct the 33-yr (1979–2011) climatology, and a comparison between them is established. Both reanalyses show good agreement in the SCs’ intensity, geographical distribution, and seasonal variability, but the interannual variability is poorly correlated. Anomaly composites for austral summer show that subtropical cyclogenesis occurs under a dipole-blocking pattern in upper levels. Upward motion is enhanced by the vertical temperature gradient between a midtropospheric cold cutoff low/trough and the intense low-level warm air advection by the South Atlantic subtropical high. Turbulent fluxes in the cyclone region are not above average during cyclogenesis, but the subtropical high flow advects great amounts of moisture from distant regions to fuel the convective activity. Although most of the SCs develop during austral summer (December–February), it is in autumn (March–May) that the most “tropical” environment is found (stronger surface fluxes and weaker vertical wind shear), leading to the most intense episodes.

Corresponding author address: Luiz Felippe Gozzo, IAG-USP, Rua do Matao, 1226, Cidade Universitaria, São Paulo, SP, CEP 05508-090, Brazil. E-mail: luiz.gozzo@iag.usp.br

Abstract

Hurricane Catarina (2004) and subtropical storm Anita (2010) called attention to the development of subtropical cyclones (SCs) over the South Atlantic basin. Besides strong and organized storms, a large number of weaker, shallower cyclones with both extratropical and tropical characteristics form in the region, impacting the South American coast. The main focus of this study is to simulate a climatology of subtropical cyclones and their synoptic pattern over the South Atlantic, proposing a broader definition of these systems. In addition, a case study is presented to discuss the main characteristics of one weak SC. The Interim ECMWF Re-Analysis (ERA-Interim) and NCEP–NCAR reanalysis are used to construct the 33-yr (1979–2011) climatology, and a comparison between them is established. Both reanalyses show good agreement in the SCs’ intensity, geographical distribution, and seasonal variability, but the interannual variability is poorly correlated. Anomaly composites for austral summer show that subtropical cyclogenesis occurs under a dipole-blocking pattern in upper levels. Upward motion is enhanced by the vertical temperature gradient between a midtropospheric cold cutoff low/trough and the intense low-level warm air advection by the South Atlantic subtropical high. Turbulent fluxes in the cyclone region are not above average during cyclogenesis, but the subtropical high flow advects great amounts of moisture from distant regions to fuel the convective activity. Although most of the SCs develop during austral summer (December–February), it is in autumn (March–May) that the most “tropical” environment is found (stronger surface fluxes and weaker vertical wind shear), leading to the most intense episodes.

Corresponding author address: Luiz Felippe Gozzo, IAG-USP, Rua do Matao, 1226, Cidade Universitaria, São Paulo, SP, CEP 05508-090, Brazil. E-mail: luiz.gozzo@iag.usp.br
Save
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, doi:10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., 1997: A study of three “hybrid” storms. Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 645–646.

  • Bombardi, R. J., L. M. Carvalho, C. Jones, and M. S. Reboita, 2014: Precipitation over eastern South America and the South Atlantic sea surface temperature during neutral ENSO periods. Climate Dyn., 42, 1553–1568, doi:10.1007/s00382-013-1832-7.

    • Search Google Scholar
    • Export Citation
  • Braun, A. J., 2009: A comparison between South Atlantic and Tasman Sea subtropical storms. M.S. thesis, Department of Meteorology, The Pennsylvania State University, 150 pp.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. H. Bromwich, and A. J. Monaghan, 2003: Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Wea. Rev., 131, 289301, doi:10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., and R. P. da Rocha, 2011: The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J. Geophys. Res., 116, D14112, doi:10.1029/2011JD016217.

    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., M. S. Reboita, and R. P. da Rocha, 2013: Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos., 118, 10 87010 883, doi:10.1002/jgrd.50830.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, doi:10.1175/2009MWR2468.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, doi:10.1175/JCLI-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Gan, M. A., and V. B. Rao, 1991: Surface cyclogenesis over South America. Mon. Wea. Rev., 119, 12931302, doi:10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983: On the evolution of the QE II storm: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 11561173, doi:10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, doi:10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanson, C. E., J. P. Palutikof, and T. D. Davies, 2004: Objective cyclone climatologies of the North Atlantic—A comparison between the ECMWF and NCEP reanalyses. Climate Dyn., 22, 757769, doi:10.1007/s00382-004-0415-z.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932, doi:10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Hólm, E. V., 2002: Revision of the ECMWF humidity analysis: Construction of a Gaussian control variable. Proc. ECMWF/GEWEX Workshop on Humidity Analysis, Reading, United Kingdom, ECMWF. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2002/Humidity/holm.pdf.]

  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, doi:10.1175/2009MWR2802.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krüger, L. F., R. P. da Rocha, M. S. Reboita, and T. Ambrizzi, 2012: RegCM3 nested in HadAM3 scenarios A2 and B2: Projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Climatic Change, 113, 599621, doi:10.1007/s10584-011-0374-4.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, C. A. Davis, E. H. Atallah, J. R. Gyakum, and K. A. Emanuel, 2006: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053, doi:10.1175/MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Mendes, D., E. P. Souza, J. A. Marengo, and M. C. D. Mendes, 2010: Climatology of extratropical cyclones over the South American–southern oceans sector. Theor. Appl. Climatol., 100, 239250, doi:10.1007/s00704-009-0161-6.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and R. A. Anthes, 1987: A numerical investigation of low-level processes in rapid cyclogenesis. Mon. Wea. Rev., 115, 27282743, doi:10.1175/1520-0493(1987)115<2728:ANIOLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quadro, M. F. L., 2012: Estudo de vortices ciclonicos de mesoescala associados a zona de convergencia do Atlantico Sul. Ph.D. thesis, Universidade de São Paulo, 158 pp.

  • Reboita, M. S., R. P. da Rocha, T. Ambrizzi, and E. Caetano, 2010a: An assessment of the latent and sensible heat flux on the simulated regional climate over southwestern South Atlantic Ocean. Climate Dyn., 34, 873889, doi:10.1007/s00382-009-0681-x.

    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., R. P. da Rocha, T. Ambrizzi, and S. Sugahara, 2010b: South Atlantic ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dyn., 35, 13311347, doi:10.1007/s00382-009-0668-7.

    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., R. P. da Rocha, and T. Ambrizzi, 2012: Dynamic and climatological features of cyclonic developments over southwestern South Atlantic Ocean. Horizons in Earth Science Research, Vol. 6, Nova Science Publishers, 135–160.

  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus, 2, 196211, doi:10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2001: Simulations of the transformation stage of the extratropical transition of tropical cyclones. Mon. Wea. Rev., 129, 14621480, doi:10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardie, J. M., and T. T. Warner, 1985: A numerical study of the development mechanisms of polar lows. Tellus, 37A, 460477, doi:10.1111/j.1600-0870.1985.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885, doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, doi:10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1995: A climatology of cyclogenesis for the Southern Hemisphere. Mon. Wea. Rev., 123, 16011619, doi:10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, doi:10.1175/JCLI-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Sugahara, S., 2000: Variação anual da frequência de ciclones no Atlântico Sul. Proc. 11th Brazilian Congress of Meteorology, Vol. 11, Rio de Janeiro, Brazil, Brazilian Society of Meteorology (SBMET), 2607–2611.

  • Tilinina, N., S. K. Gulev, I. Rudeva, and P. Koltermann, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, doi:10.1175/JCLI-D-12-00777.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2269 1377 396
PDF Downloads 905 173 9