Two Modes of Change of the Distribution of Rain

Angeline G. Pendergrass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Angeline G. Pendergrass in
Current site
Google Scholar
PubMed
Close
and
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The frequency and intensity of rainfall determine its character and may change with climate. A methodology for characterizing the frequency and amount of rainfall as functions of the rain rate is developed. Two modes of response are defined, one in which the distribution of rainfall increases in equal fraction at all rain rates and one in which the rainfall shifts to higher or lower rain rates without a change in mean rainfall.

This description of change is applied to the tropical distribution of daily rainfall over ENSO phases in models and observations. The description fits observations and most models well, although some models also have an extreme mode in which the frequency increases at extremely high rain rates. The multimodel mean from phase 5 of the Coupled Model Intercomparison Project (CMIP5) agrees with observations in showing a very large shift of 14%–15% K−1, indicating large increases in the heaviest rain rates associated with El Niño. Models with an extreme mode response to global warming do not agree as well with observations of the rainfall response to El Niño.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00182.s1.

Corresponding author address: Angeline G. Pendergrass, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: apgrass@ucar.edu

Abstract

The frequency and intensity of rainfall determine its character and may change with climate. A methodology for characterizing the frequency and amount of rainfall as functions of the rain rate is developed. Two modes of response are defined, one in which the distribution of rainfall increases in equal fraction at all rain rates and one in which the rainfall shifts to higher or lower rain rates without a change in mean rainfall.

This description of change is applied to the tropical distribution of daily rainfall over ENSO phases in models and observations. The description fits observations and most models well, although some models also have an extreme mode in which the frequency increases at extremely high rain rates. The multimodel mean from phase 5 of the Coupled Model Intercomparison Project (CMIP5) agrees with observations in showing a very large shift of 14%–15% K−1, indicating large increases in the heaviest rain rates associated with El Niño. Models with an extreme mode response to global warming do not agree as well with observations of the rainfall response to El Niño.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00182.s1.

Corresponding author address: Angeline G. Pendergrass, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: apgrass@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 354.37 KB)
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2013: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35,533552, doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K. T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate,25, 3291–3306, doi:10.1175/JCLI-D-11-00239.1.

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First-and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Climate Data and Monitoring Programme Rep. 72 and WMO Tech. Doc. 1500, 56 pp.

  • Kopparla, P., E. Fischer, C. Hannay, and R. Knutti, 2013: Improved simulation of extreme precipitation in a high resolution atmosphere model. Geophys. Res. Lett., 40, 5803–5808, doi:10.1002/2013GL057866.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 31633169, doi:10.1002/grl.50420.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and R. P. Allan, 2012: Multisatellite observed responses of precipitation and its extremes to interannual climate variability. J. Geophys. Res., 117, D03101, doi:10.1029/2011JD016568.

    • Search Google Scholar
    • Export Citation
  • Liu, C., R. P. Allan, and G. J. Huffman, 2012: Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys. Res. Lett., 39, L13803, doi:10.1029/2012GL052093.

    • Search Google Scholar
    • Export Citation
  • Masson, D., and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 773–14 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, doi:10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., 2013: The atmospheric energy constraint on precipitation change. Ph.D. dissertation, University of Washington, 134 pp.

  • Pendergrass, A., and D. Hartmann, 2014a: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., and D. Hartmann, 2014b: Changes in the distribution of rain frequency and intensity in response to warming. J. Climate, 27, 83728383, doi:10.1175/JCLI-D-14-00183.1.

    • Search Google Scholar
    • Export Citation
  • Pennell, C., and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367, doi:10.1175/2010JCLI3814.1.

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2003: The scatter in tropical average precipitation anomalies. J. Climate, 16, 39663977, doi:10.1175/1520-0442(2003)016<3966:TSITAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, doi:10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change,42, 327–339, doi:10.1023/A:1005488920935.

  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123–138, doi:10.3354/cr00953.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Watterson, I., and M. Dix, 2003: Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J. Geophys. Res., 108, 4379, doi:10.1029/2002JD002928.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3046 1104 148
PDF Downloads 1801 392 30