Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming

Angeline G. Pendergrass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Angeline G. Pendergrass in
Current site
Google Scholar
PubMed
Close
and
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in the frequency and intensity of rainfall are an important potential impact of climate change. Two modes of change, a shift and an increase, are applied to simulations of global warming with models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The response to CO2 doubling in the multimodel mean of CMIP5 daily rainfall is characterized by an increase of 1% K−1 at all rain rates and a shift to higher rain rates of 3.3% K−1. In addition to these increase and shift modes of change, some models also show a substantial increase in rainfall at the highest rain rates called the extreme mode of response to warming. In some models, this extreme mode can be shown to be associated with increases in grid-scale condensation or gridpoint storms.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00183.s1.

Corresponding author address: Angeline G. Pendergrass, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: apgrass@ucar.edu

Abstract

Changes in the frequency and intensity of rainfall are an important potential impact of climate change. Two modes of change, a shift and an increase, are applied to simulations of global warming with models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The response to CO2 doubling in the multimodel mean of CMIP5 daily rainfall is characterized by an increase of 1% K−1 at all rain rates and a shift to higher rain rates of 3.3% K−1. In addition to these increase and shift modes of change, some models also show a substantial increase in rainfall at the highest rain rates called the extreme mode of response to warming. In some models, this extreme mode can be shown to be associated with increases in grid-scale condensation or gridpoint storms.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00183.s1.

Corresponding author address: Angeline G. Pendergrass, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: apgrass@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.39 MB)
Save
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K. T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate,25, 3291–3306, doi:10.1175/JCLI-D-11-00239.1.

  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Zhao, and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64, 228238, doi:10.1175/JAS3825.11.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kopparla, P., E. Fischer, C. Hannay, and R. Knutti, 2013: Improved simulation of extreme precipitation in a high resolution atmosphere model. Geophys. Res. Lett., 40, 5803–5808, doi:10.1002/2013GL057866.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 31633169, doi:10.1002/grl.50420.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, Y. Ming, J.-C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J. Climate, 26, 54535466, doi:10.1175/JCLI-D-12-00442.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1256/smsqj.47516.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, doi:10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., 2013: The atmospheric energy constraint on precipitation change. Ph.D. dissertation, University of Washington, 134 pp.

  • Pendergrass, A., and D. L. Hartmann, 2014a: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., and D. L. Hartmann, 2014b: Two modes of change of the distribution of rain. J. Climate, 27, 83578371, doi:10.1175/JCLI-D-14-00182.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, doi:10.1175/JCLI-D-11-00725.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, doi:10.1073/pnas.0903186107.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, doi:10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, doi:10.1023/A:1005488920935.

  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123–138, doi:10.3354/cr00953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6445 1742 212
PDF Downloads 3904 921 70