A Simple Analytical Model for Understanding the Formation of Sea Surface Temperature Patterns under Global Warming

Lei Zhang Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
and
Tim Li Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Climate Dynamics Research Center/Earth System Modeling Center, International Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open.

A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.

School of Ocean and Earth Science and Technology Contribution Number 9191, International Pacific Research Center Contribution Number 1073, and Earth System Modeling Center Contribution Number 015.

Corresponding author address: Tim Li, IPRC and Department of Atmospheric Sciences, University of Hawaii, 1680 East-West Rd., Post 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu

Abstract

How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open.

A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.

School of Ocean and Earth Science and Technology Contribution Number 9191, International Pacific Research Center Contribution Number 1073, and Earth System Modeling Center Contribution Number 015.

Corresponding author address: Tim Li, IPRC and Department of Atmospheric Sciences, University of Hawaii, 1680 East-West Rd., Post 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu
Save
  • Alexeev, V. A., 2003: Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: A linear analysis. Climate Dyn., 20, 775787, doi:10.1007/s00382-003-0312-x.

    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aqua planet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and hydrological cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P., and T. Li, 2012: Is “rich-get-richer” valid for Indian Ocean and Atlantic ITCZ? Geophys. Res. Lett., 39, L13705, doi:10.1029/2012GL052399.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., and S. G. H. Philander, 1996: On the annual cycle of the equatorial eastern Pacific. J. Climate, 9, 29862998, doi:10.1175/1520-0442(1996)009<2986:OTACOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., M. Kwon, M. Zhao, J.-S. Kug, J.-J. Luo, and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett.,37, L21804, doi:10.1029/2010GL045124.

  • Liu, J., B. Wang, M. A. Cane, S. Y. Yim, and J. Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, doi:10.1038/nature11784.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S. P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., K. Bryan, and M. J. Spelman, 1990: Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceanogr., 20, 722749, doi:10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 8183, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2149 1063 353
PDF Downloads 751 150 19