Radiative–Convective Equilibrium over a Land Surface

Nicolas Rochetin Columbia University, New York, New York

Search for other papers by Nicolas Rochetin in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
,
Kirsten L. Findell Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Kirsten L. Findell in
Current site
Google Scholar
PubMed
Close
,
Adam H. Sobel Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
, and
Pierre Gentine Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radiative–convective equilibrium (RCE) describes an idealized state of the atmosphere in which the vertical temperature profile is determined by a balance between radiative and convective fluxes. While RCE has been applied extensively over oceans, its application over the land surface has been limited. The present study explores the properties of RCE over land using an atmospheric single-column model (SCM) from the Laboratoire de Météorologie Dynamique–Zoom, version 5B (LMDZ5B) general circulation model coupled in temperature and moisture to a land surface model using a simplified bucket model with finite moisture capacity. Given the presence of a large-amplitude diurnal heat flux cycle, the resultant RCE exhibits multiple equilibria when conditions are neither strictly water nor energy limited. By varying top-of-atmosphere insolation (through changes in latitude), total system water content, and initial temperature conditions the sensitivity of the land RCE states is assessed, with particular emphasis on the role of clouds. Based on this analysis, it appears that a necessary condition for the model to exhibit multiple equilibria is the presence of low-level clouds coupled to the diurnal cycle of radiation. In addition the simulated surface precipitation rate varies nonmonotonically with latitude as a result of a tradeoff between in-cloud rain rate and subcloud rain reevaporation, thus underscoring the importance of subcloud layer processes and unsaturated downdrafts. It is shown that clouds, especially at low levels, are key elements of the internal variability of the coupled land–atmosphere system through their feedback on radiation.

Denotes Open Access content.

Corresponding author address: Pierre Gentine, Earth Institute/Department of Earth and Environmental Engineering, Columbia University, 500 W 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu

Abstract

Radiative–convective equilibrium (RCE) describes an idealized state of the atmosphere in which the vertical temperature profile is determined by a balance between radiative and convective fluxes. While RCE has been applied extensively over oceans, its application over the land surface has been limited. The present study explores the properties of RCE over land using an atmospheric single-column model (SCM) from the Laboratoire de Météorologie Dynamique–Zoom, version 5B (LMDZ5B) general circulation model coupled in temperature and moisture to a land surface model using a simplified bucket model with finite moisture capacity. Given the presence of a large-amplitude diurnal heat flux cycle, the resultant RCE exhibits multiple equilibria when conditions are neither strictly water nor energy limited. By varying top-of-atmosphere insolation (through changes in latitude), total system water content, and initial temperature conditions the sensitivity of the land RCE states is assessed, with particular emphasis on the role of clouds. Based on this analysis, it appears that a necessary condition for the model to exhibit multiple equilibria is the presence of low-level clouds coupled to the diurnal cycle of radiation. In addition the simulated surface precipitation rate varies nonmonotonically with latitude as a result of a tradeoff between in-cloud rain rate and subcloud rain reevaporation, thus underscoring the importance of subcloud layer processes and unsaturated downdrafts. It is shown that clouds, especially at low levels, are key elements of the internal variability of the coupled land–atmosphere system through their feedback on radiation.

Denotes Open Access content.

Corresponding author address: Pierre Gentine, Earth Institute/Department of Earth and Environmental Engineering, Columbia University, 500 W 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu
Save
  • Aleina, F. C., M. Baudena, F. D’Andrea, and A. Provenzale, 2013: Multiple equilibria on planet Dune: Climate–vegetation dynamics on a sandy planet. Tellus, 65B, 17662, doi:10.3402/tellusb.v65i0.17662.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998: A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol., 212–213, 198212, doi:10.1016/S0022-1694(98)00253-4.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., and D. Entekhabi, 2012: Relative efficiency of land surface energy balance components. Water Resour. Res.,48, W04510, doi:10.1029/2011WR011357.

  • Bechtold, P., J. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. J. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178196, doi:10.1002/qj.49709941915.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1976: The thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts. J. Atmos. Sci., 33, 10081020, doi:10.1175/1520-0469(1976)033<1008:TTTOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; Evaluation using TOGA COARE data. J. Atmos. Sci., 58, 31583183, doi:10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Boulet, G., A. Chehbouni, P. Gentine, B. Duchemin, J. Ezzahar, and R. Hadria, 2007: Monitoring water stress using time series of observed to unstressed surface temperature difference. Agric. For. Meteor., 146, 159172, doi:10.1016/j.agrformet.2007.05.012.

    • Search Google Scholar
    • Export Citation
  • Brient, F., and S. Bony, 2012: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 24152431, doi:10.1007/s00382-011-1279-7.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K., and D. Entekhabi, 1995: An analytic approach to modeling land atmosphere interaction: 1. Construct and equilibrium behavior. Water Resour. Res., 31, 619632, doi:10.1029/94WR01772.

    • Search Google Scholar
    • Export Citation
  • Castelli, F., D. Entekhabi, and E. Caporali, 1999: Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour. Res., 35, 31153125, doi:10.1029/1999WR900140.

    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. Mc Dougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE: The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, doi:10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and K. A. Emanuel, 2013: The climate time scale in the approach to radiative-convective equilibrium. J. Adv. Model. Earth Syst., 5, 843–849, doi:10.1002/jame.20049.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • DelSole, T., M. Zhao, and P. A. Dirmeyer, 2009: A new method for exploring coupled land–atmosphere dynamics. J. Hydrometeor., 10, 10401050, doi:10.1175/2009JHM1071.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., I. Beau, P. Bechtold, J. Grandpeix, J. Piriou, J. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • D'Odorico, P., and A. Porporato, 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101, 8848–8851, doi:10.1073/pnas.0401428101.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and K. Brubaker, 1995: An analytic approach to modeling land-atmosphere interaction: 2. Stochastic formulation. Water Resour. Res., 31, 633643, doi:10.1029/94WR01773.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., I. Rodriguez-Iturbe, and R. L. Bras, 1992: Variability in large-scale water balance with land surface-atmosphere interaction. J. Climate, 5, 798813, doi:10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K., P. Gentine, and B. Lintner, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2010: Spectral behaviour of a coupled land-surface and boundary-layer system. Bound.-Layer Meteor., 134, 157180, doi:10.1007/s10546-009-9433-z.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., J. Polcher, and D. Entekhabi, 2011: Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system. Water Resour. Res.,47, W05525, doi:10.1029/2010WR009268.

  • Gentine, P., B. Heusinkveld, and D. Entekhabi, 2012: Systematic errors in ground heat flux estimation and their correction. Water Resour. Res., 48, W09541, doi:10.1029/2010WR010203.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Gold, E., 1909: The isothermal layer of the atmosphere and atmospheric radiation. Proc. Roy. Soc. London, 82, 4370, doi:10.1098/rspa.1909.0006.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., 1949: The thermal equilibrium at the tropopause and the temperature of the lower stratosphere. Proc. Roy. Soc. London, 197A, 487505, doi:10.1098/rspa.1949.0076.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and V. Phillips, 2004: Improved mixing representation in Emanuel’s convection scheme. Quart. J. Roy. Meteor. Soc., 130, 32073222, doi:10.1256/qj.03.144.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, doi:10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., J.-P. Lafore, and F. Cheruy, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1D simulations. J. Atmos. Sci., 67, 898922, doi:10.1175/2009JAS3045.1.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Hilbert, D., 1912: Bergrundung der elementaren Strahlungstheorie. Phys. Z., 13, 10561064.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schaer, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., F. Couvreux, and L. Menut, 2002: Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59, 11051123, doi:10.1175/1520-0469(2002)059<1105:POTDCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., J. Y. Grandpeix, C. Rio, S. Bony, and A. Jam, 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn .,40, 2193–2222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1994: The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17,6178, doi:10.1016/0309-1708(94)90024-8.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe, 2001: Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour., 24, 707723, doi:10.1016/S0309-1708(01)00005-7.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., P. Gentine, K. L. Findell, F. D’Andrea, A. H. Sobel, and G. D. Salvucci, 2013: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 23792389, doi:10.1175/JCLI-D-11-00561.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and ocean circulation. I: The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774, doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci.,24, 241–259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys.,20, 851–875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1991: Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96 (D5), 91219132, doi:10.1029/89JD01597.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800, doi:10.1175/2011JCLI3876.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and S. A. Klein, 2014: Land-atmosphere coupling manifested in warm-season observations on the U.S. southern Great Plains. J. Geophys. Res. Atmos.,119, 509–528, doi:10.1002/2013JD020492.

    • Search Google Scholar
    • Export Citation
  • Porporato, A., F. Laio, L. Ridolfi, and I. Rodriguez-Iturbe, 2001: Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress. Adv. Water Resour., 24, 725744, doi:10.1016/S0309-1708(01)00006-9.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., N. Rochetin, F. Aires, E. Defer, J.-Y. Grandpeix, C. Jimenez, and F. Papa, 2011: Impact of the inundation occurrence on the deep convection at continental scale from satellite observations and modeling experiments. J. Geophys. Res., 116, D24118, doi:10.1029/2011JD016311.

    • Search Google Scholar
    • Export Citation
  • Renno, N., 1997: Multiple equilibria in radiative-convective atmospheres. Tellus, 49A, 423438, doi:10.1034/j.1600-0870.1997.t01-3-00002.x.

    • Search Google Scholar
    • Export Citation
  • Rio, C., and F. Hourdin, 2008: A thermal plume model for the convective boundary layer: Representation of cumulus clouds. J. Atmos. Sci., 65, 407425, doi:10.1175/2007JAS2256.1.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett.,36, L07809, doi:10.1029/2008GL036779.

  • Rio, C., F. Hourdin, F. Couvreux, and A. Jam, 2010: Resolved versus parametrized boundary-layer plumes. Part II: Continuous formulations of mixing rates for mass-flux schemes. Bound.-Layer Meteor., 135, 469483, doi:10.1007/s10546-010-9478-z.

    • Search Google Scholar
    • Export Citation
  • Rio, C., J. Y. Grandpeix, F. Hourdin, and F. Guichard, 2012: Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDZ5B general circulation model. Climate Dyn., 40,22712292, doi:10.1007/s00382-012-1506-x.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., D. Entekhabi, and R. L. Bras, 1991a: Nonlinear dynamics of soil moisture at climate scales. 1. Stochastic analysis. Water Resour. Res., 27, 18991906, doi:10.1029/91WR01035.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., D. Entekhabi, J.-S. Lee, and R. L. Bras, 1991b: Nonlinear dynamics of soil moisture at climate scales. 2. Chaotic analysis. Water Resour. Res., 27, 19071915, doi:10.1029/91WR01036.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. R. Cox, 1999: Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation. Proc. Roy. Soc. London, 455A, 37893805, doi:10.1098/rspa.1999.0477.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138, doi:10.1175/2010JAS3542.1.

  • Schlemmer, L., C. Hohenegger, J. Schmidli, C. S. Bretherton, and C. Schaer, 2011: An idealized cloud-resolving framework for the study of midlatitude diurnal convection over land. J. Atmos. Sci., 68, 10411057, doi:10.1175/2010JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, doi:10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001a: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001b: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998a: Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Quart. J. Roy. Meteor. Soc., 124, 26932713, doi:10.1002/qj.49712455208.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998b: Radiative–convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 20732097, doi:10.1002/qj.49712455013.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and E. A. B. Eltahir, 2000: Biosphere–atmosphere interactions over West Africa. II: Multiple climate equilibria. Quart. J. Roy. Meteor. Soc., 126, 12611280, doi:10.1002/qj.49712656504.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Zhang, M., C. S. Bretherton, P. N. Blossey, S. Bony, F. Brient, and J.-C. Golaz, 2012: The CGILS experimental design to investigate low cloud feedbacks in general circulation models by using single-column and large-eddy simulation models. J. Adv. Model. Earth Syst.,4, M12001, doi:10.1029/2012MS000182.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2062 1565 107
PDF Downloads 542 168 8