Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC)

Keith Lindsay * Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Keith Lindsay in
Current site
Google Scholar
PubMed
Close
,
Gordon B. Bonan * Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gordon B. Bonan in
Current site
Google Scholar
PubMed
Close
,
Scott C. Doney Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Scott C. Doney in
Current site
Google Scholar
PubMed
Close
,
Forrest M. Hoffman Computational Earth Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Forrest M. Hoffman in
Current site
Google Scholar
PubMed
Close
,
David M. Lawrence * Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Matthew C. Long * Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Matthew C. Long in
Current site
Google Scholar
PubMed
Close
,
Natalie M. Mahowald Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Natalie M. Mahowald in
Current site
Google Scholar
PubMed
Close
,
J. Keith Moore Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by J. Keith Moore in
Current site
Google Scholar
PubMed
Close
,
James T. Randerson Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by James T. Randerson in
Current site
Google Scholar
PubMed
Close
, and
Peter E. Thornton ** Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Peter E. Thornton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Keith Lindsay, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: klindsay@ucar.edu

This article is included in the CESM1 Special Collection.

Abstract

Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Keith Lindsay, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: klindsay@ucar.edu

This article is included in the CESM1 Special Collection.

Save
  • Anav, A., and Coauthors, 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 68016843, doi:10.1175/JCLI-D-12-00417.1.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, 2001: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II, 49, 219236, doi:10.1016/S0967-0645(01)00101-1.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. Levis, 2010: Quantifying carbon–nitrogen feedbacks in the Community Land Model (CLM4). Geophys. Res. Lett., 37, L07401, doi:10.1029/2010GL042430.

    • Search Google Scholar
    • Export Citation
  • Bousquet, P., P. Peylin, P. Ciais, C. L. Quéré, P. Friedlingstein, and P. P. Tans, 2000: Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 13421346, doi:10.1126/science.290.5495.1342.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Cadule, P., P. Friedlingstein, L. Bopp, S. Sitch, C. D. Jones, P. Ciais, S. L. Piao, and P. Peylin, 2010: Benchmarking coupled climate–carbon models against long-term atmospheric CO2 measurements. Global Biogeochem. Cycles, 24, GB2016, doi:10.1029/2009GB003556.

    • Search Google Scholar
    • Export Citation
  • Canadell, J. G., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA, 104, 18 86618 870, doi:10.1073/pnas.0702737104.

    • Search Google Scholar
    • Export Citation
  • Carr, M.-E., and Coauthors, 2006: A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II, 53, 741770, doi:10.1016/j.dsr2.2006.01.028.

    • Search Google Scholar
    • Export Citation
  • Cooperative Atmospheric Data Integration Project, 2011: GLOBALVIEW-CO2, NOAA ESRL, CD-ROM.

  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., K. Lindsay, I. Fung, and J. John, 2006: Natural variability in a stable, 1000-yr global coupled climate–carbon cycle simulation. J. Climate, 19, 30333054, doi:10.1175/JCLI3783.1.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof, 2009: Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. II, 56, 640655, doi:10.1016/j.dsr2.2008.12.006.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Fung, I. Y., S. C. Doney, K. Lindsay, and J. John, 2005: Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 102, 11 20111 206, doi:10.1073/pnas.0504949102.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. N., and Coauthors, 2004: Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153226, doi:10.1007/s10533-004-0370-0.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. Vol. 3, World Ocean Atlas 2009, NOAA Atlas NESDIS 70, 28 pp.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Graven, H. D., and Coauthors, 2013: Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science, 341, 10851089, doi:10.1126/science.1239207.

    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and Coauthors, 2014: Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J. Geophys. Res. Biogeosci., 119, 141162, doi:10.1002/2013JG002381.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., 1999: Analysis of passive tracer transport as modeled by an atmospheric general circulation model. J. Climate, 12, 16591684, doi:10.1175/1520-0442(1999)012<1659:AOPTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., 2003: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 55B, 378390, doi:10.1034/j.1600-0889.2003.01450.x.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., S. Frolking, M. G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S. W. Pacala, and R. A. Houghton, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229, doi:10.1111/j.1365-2486.2006.01150.x.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., S. Yeager, K. Lindsay, K. Moore, and R. Murtugudde, 2010: Quantification of the feedback between phytoplankton and ENSO in the Community Climate System Model. J. Climate, 23, 29162925, doi:10.1175/2010JCLI3254.1.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., J. F. S. Chin, and T. P. Whorf, 1996: Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146149, doi:10.1038/382146a0.

    • Search Google Scholar
    • Export Citation
  • Keppel-Aleks, G., and Coauthors, 2013: Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first centuries. J. Climate, 26, 44474475, doi:10.1175/JCLI-D-12-00589.1.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, doi:10.1038/nature08526.

    • Search Google Scholar
    • Export Citation
  • Koven, C. D., and Coauthors, 2013: The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 10, 71097131, doi:10.5194/bg-10-7109-2013.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, A., J. K. Moore, C. S. Zender, and C. Luo, 2007: Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. J. Geophys. Res., 112, G02019, doi:10.1029/2006JG000334.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, doi:10.1175/JCLI-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, 25, 30713095, doi:10.1175/JCLI-D-11-00256.1.

    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, E. Kluzek, P. E. Thornton, A. Jones, W. J. Sacks, and C. J. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land–atmosphere fluxes. J. Climate, 25, 48394859, doi:10.1175/JCLI-D-11-00446.1.

    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800, doi:10.1175/JCLI-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Luo, C., N. M. Mahowald, and J. del Corral, 2003: Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res., 108, 4447, doi:10.1029/2003JD003483.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., and S. C. Doney, 2007: Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochem. Cycles, 21, GB2001, doi:10.1029/2006GB002762.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., and O. Braucher, 2008: Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences, 5, 631656, doi:10.5194/bg-5-631-2008.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., S. C. Doney, and K. Lindsay, 2004: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Climate, 26, 92919312, doi:10.1175/JCLI-D-12-00566.1.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field, 1997: The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles, 11, 535560, doi:10.1029/97GB02268.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biol., 15, 24622484, doi:10.1111/j.1365-2486.2009.01912.x.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, doi:10.1126/science.1097403.

  • Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles, 21, GB4018, doi:10.1029/2006GB002868.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Coauthors, 2009: Carbon–nitrogen interactions regulate climate–carbon cycle feedbacks: Results from an atmosphere–ocean general circulation model. Biogeosciences, 6, 20992120, doi:10.5194/bg-6-2099-2009.

    • Search Google Scholar
    • Export Citation
  • Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 17171736, doi:10.5194/bg-10-1717-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J. K. Moore, F. W. Primeau, and S. Khatiwala, 2012: Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation–biogeochemical model: Comparison with data-based estimates. Biogeosciences, 9, 13211336, doi:10.5194/bg-9-1321-2012.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., R. M. Law, and B. Pak, 2010: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 22612282, doi:10.5194/bg-7-2261-2010.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., A. D. Friend, P. Friedlingstein, F. Dentener, P. Peylin, and M. Schulz, 2010: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochem. Cycles, 24, GB1006, doi:10.1029/2009GB003522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1375 488 103
PDF Downloads 861 299 50