Changes in the Land Surface Energy Budget in Eastern China over the Past Three Decades: Contributions of Land-Cover Change and Climate Change

J. W. Yan * State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, and Department of Tourism and Environmental Sciences, Shaanxi Normal University, Xi’an, China

Search for other papers by J. W. Yan in
Current site
Google Scholar
PubMed
Close
,
J. Y. Liu State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by J. Y. Liu in
Current site
Google Scholar
PubMed
Close
,
B. Z. Chen State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by B. Z. Chen in
Current site
Google Scholar
PubMed
Close
,
M. Feng Global Land Cover Facility, Department of Geographical Sciences, University of Maryland, College Park, College Park, Maryland

Search for other papers by M. Feng in
Current site
Google Scholar
PubMed
Close
,
S. F. Fang State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by S. F. Fang in
Current site
Google Scholar
PubMed
Close
,
G. Xu Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China

Search for other papers by G. Xu in
Current site
Google Scholar
PubMed
Close
,
H. F. Zhang Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China

Search for other papers by H. F. Zhang in
Current site
Google Scholar
PubMed
Close
,
M. L. Che Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China

Search for other papers by M. L. Che in
Current site
Google Scholar
PubMed
Close
,
W. Liang Department of Tourism and Environmental Sciences, Shaanxi Normal University, Xi’an, China

Search for other papers by W. Liang in
Current site
Google Scholar
PubMed
Close
,
Y. F. Hu ** Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Y. F. Hu in
Current site
Google Scholar
PubMed
Close
,
W. H. Kuang ** Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by W. H. Kuang in
Current site
Google Scholar
PubMed
Close
, and
H. M. Wang ** Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by H. M. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sensible heat flux (H), latent heat flux (LE), and net radiation (NR) are important surface energy components that directly influence climate systems. In this study, the changes in the surface energy and their contributions from global climate change and/or land-cover change over eastern China during the past nearly 30 years were investigated and assessed using a process-based land surface model [the Ecosystem–Atmosphere Simulation Scheme (EASS)]. The modeled results show that climate change contributed more to the changes of land surface energy fluxes than land-cover change, with their contribution ratio reaching 4:1 or even higher. Annual average temperature increased before 2000 and reversed thereafter; annual total precipitation continually decreased, and incident solar radiation continually increased over the past nearly 30 years. These climatic changes could lead to increased NR, H, and LE, assuming land cover remained unchanged during the past nearly 30 years. Among these meteorological variables, at spatial distribution, the incident solar radiation has the greatest effect on land surface energy exchange. The impacts of land-cover change on the seasonal variations in land surface heat fluxes between the four periods were large, especially for H. The changes in the regional energy fluxes resulting from different land-cover type conversions varied greatly. The conversion from farmland to evergreen coniferous forests had the greatest influence on land surface energy exchange, leading to a decrease in H by 19.39% and an increase in LE and NR by 7.44% and 2.74%, respectively. The results of this study can provide a basis and reference for climate change adaptation.

Corresponding author address: B. Z. Chen, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China. E-mail: Baozhang.Chen@igsnrr.ac.cn

Abstract

Sensible heat flux (H), latent heat flux (LE), and net radiation (NR) are important surface energy components that directly influence climate systems. In this study, the changes in the surface energy and their contributions from global climate change and/or land-cover change over eastern China during the past nearly 30 years were investigated and assessed using a process-based land surface model [the Ecosystem–Atmosphere Simulation Scheme (EASS)]. The modeled results show that climate change contributed more to the changes of land surface energy fluxes than land-cover change, with their contribution ratio reaching 4:1 or even higher. Annual average temperature increased before 2000 and reversed thereafter; annual total precipitation continually decreased, and incident solar radiation continually increased over the past nearly 30 years. These climatic changes could lead to increased NR, H, and LE, assuming land cover remained unchanged during the past nearly 30 years. Among these meteorological variables, at spatial distribution, the incident solar radiation has the greatest effect on land surface energy exchange. The impacts of land-cover change on the seasonal variations in land surface heat fluxes between the four periods were large, especially for H. The changes in the regional energy fluxes resulting from different land-cover type conversions varied greatly. The conversion from farmland to evergreen coniferous forests had the greatest influence on land surface energy exchange, leading to a decrease in H by 19.39% and an increase in LE and NR by 7.44% and 2.74%, respectively. The results of this study can provide a basis and reference for climate change adaptation.

Corresponding author address: B. Z. Chen, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China. E-mail: Baozhang.Chen@igsnrr.ac.cn
Save
  • Allen, R. G., M. Tasumi, and R. Trezza, 2007: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng., 133, 380–394, doi:10.1061/(ASCE)0733-9437(2007)133:4(380)).

    • Search Google Scholar
    • Export Citation
  • Anderson, R. G., and Coauthors, 2011: Biophysical considerations in forestry for climate protection. Front. Ecol. Environ., 9, 174–182, doi:10.1890/090179.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. Moreno, G. J. Roerink, and T. A. van der Wal, 1998: A remote sensing surface energy balance algorithm for land (SEBAL). Part 2: Validation. J. Hydrol., 212–213, 198–212, doi:10.1016/S0022-1694(98)00254-6.

    • Search Google Scholar
    • Export Citation
  • Beltrán-Przekurat, A., R. A. Pielke Sr., J. L. Eastman, and M. B. Coughenour, 2012: Modeling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. Int. J. Climatol., 32, 1206–1225, doi:10.1002/joc.2346.

    • Search Google Scholar
    • Export Citation
  • Bing, L. F., H. B. Su, Q. Q. Shao, and J. Y. Liu, 2012: Changing characteristic of land surface evapotranspiration and soil moisture in China during the past 30 years. J. Geo-Inf. Sci.,14, 1–13, doi:10.3724/SP.J.1047.2012.00001.

  • Boucher, O., G. Myhre, and A. Myhre, 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597–603, doi:10.1007/s00382-004-0402-4.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Chen, and W. Ju, 2007: Remote sensing based ecosystem–atmosphere simulation Scheme (EASS)—Model formulation and test with multiple-year data. Ecol. Modell., 209, 277–300, doi:10.1016/j.ecolmodel.2007.06.032.

    • Search Google Scholar
    • Export Citation
  • Chen, J. M., J. Liu, J. Cihlar, and M. L. Goulden, 1999: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Modell., 124, 99–119, doi:10.1016/S0304-3800(99)00156-8.

    • Search Google Scholar
    • Export Citation
  • Choi, M., W. P. Kustas, M. C. Anderson, R. G. Allen, F. Li, and J. H. Kjaersgaard, 2009: An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX. Agric. For. Meteor., 149, 2082–2097, doi:10.1016/j.agrformet.2009.07.002.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., V. Brovkin, and A. Ganopolski, 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 1011–1014, doi:10.1029/2000GL012471.

    • Search Google Scholar
    • Export Citation
  • de Pury, D., and G. Farquhar, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ., 20, 537–557, doi:10.1111/j.1365-3040.1997.00094.x.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and Coauthors, 2002: Nitrogen controls on climate model evapotranspiration. J. Climate, 15, 278–295, doi:10.1175/1520-0442(2002)015<0278:NCOCME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2005: Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany. Ecol. Modell., 188, 174–216, doi:10.1016/j.ecolmodel.2005.01.057.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. H. Costa, C. Delire, N. Ramankutty, and P. Snyder, 2003: Green surprise? How terrestrial ecosystems could affect earth’s climate. Front. Ecol. Environ., 1, 38–44, doi:10.2307/3867963.

    • Search Google Scholar
    • Export Citation
  • Ganguly, S., A. Samanta, M. A. Schull, N. V. Shabanov, C. Milesi, R. R. Nemani, Y. Knyazikhin, and R. B. Myneni, 2008: Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ., 112, 4318–4332, doi:10.1016/j.rse.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., C. Liu, W. Gao, and N.-B. Chang, 2011: A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. Hydrol. Earth Syst. Sci., 15, 119–139, doi:10.5194/hess-15-119-2011.

    • Search Google Scholar
    • Export Citation
  • Gu, L., and Coauthors, 2006: Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res., 111, D16102, doi:10.1029/2006JD007161.

    • Search Google Scholar
    • Export Citation
  • Hicke, J. A., 2005: NCEP and GISS solar radiation data sets available for ecosystem modeling: Description, differences, and impacts on net primary production. Global Biogeochem. Cycles,19, GB2006, doi:10.1029/2004GB002391.

  • Ibrom, A., and Coauthors, 2007: Effects of land-use change on matter and energy exchange between ecosystems in the rain forest margin and the atmosphere. Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation, T. Tscharntke, et al., Eds., Springer-Verlag, 463–492.

  • Jarvis, P. G., 1995: Scaling processes and problems. Plant Cell Environ., 18, 1079–1089, doi:10.1111/j.1365-3040.1995.tb00620.x.

  • Jiang, L., and S. Islam, 2001: Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resour. Res., 37, 329–340, doi:10.1029/2000WR900255.

    • Search Google Scholar
    • Export Citation
  • Kabat, P., and Coauthors, 2004: Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System. Springer, 566 pp.

  • Kustas, W. P., and J. M. Norman, 1999: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteor., 94, 13–29, doi:10.1016/S0168-1923(99)00005-2.

    • Search Google Scholar
    • Export Citation
  • Li, Y. J., Z. Xu, Y. Wang, L. Zhou, and G. Zhou, 2007: Latent and sensible heat fluxes and energy balance in a maize agroecosystem. Chin. J. Plant Ecol.,31, 1132–1144.

  • Li, Z., W.-Z. Liu, X.-C. Zhang, and F.-L. Zheng, 2009: Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol., 377, 35–42, doi:10.1016/j.jhydrol.2009.08.007.

    • Search Google Scholar
    • Export Citation
  • Li, Z. Q., G. R. Yu, X. F. Wen, L. M. Zhang, C. Y. Ren, and Y. L. Fu, 2005: Energy balance closure at ChinaFLUX sites. Sci. China, 48D,54–72.

    • Search Google Scholar
    • Export Citation
  • Liu, J., M. Liu, H. Q. Tian, D. Zhuang, Z. Zhang, W. Zhang, X. Tang, and X. Deng, 2005a: Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ., 98, 442–456, doi:10.1016/j.rse.2005.08.012.

    • Search Google Scholar
    • Export Citation
  • Liu, J., H. Tian, M. Liu, D. Zhuang, J. M. Melillo, and Z. Zhang, 2005b: China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett., 32, L02405, doi:10.1029/2004GL021649.

    • Search Google Scholar
    • Export Citation
  • Lobell, D., G. Bala, and P. Duffy, 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33, L06708, doi:10.1029/2005GL025492.

    • Search Google Scholar
    • Export Citation
  • Lobell, D., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 2248–2255, doi:10.1175/2008JCLI2703.1.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., and L. M. Kueppers, 2012: Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3—Community Land Model 3.5). J. Geophys. Res., 117, D06111, doi:10.1029/2011JD016991.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2010: Impacts of land use/land cover change on climate and future research priorities. Bull. Amer. Meteor. Soc., 91, 37–46, doi:10.1175/2009BAMS2769.1.

    • Search Google Scholar
    • Export Citation
  • Mao, D., and K. A. Cherkauer, 2009: Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol., 374, 71–82, doi:10.1016/j.jhydrol.2009.06.016.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., C. Liebethal, M. Göckede, J.-P. Leps, F. Beyrich, and T. Foken, 2006: Processing and quality control of EC data during LITFASS-2003. Bound.-Layer Meteor., 121, 67–88, doi:10.1007/s10546-006-9094-0.

    • Search Google Scholar
    • Export Citation
  • Melesse, A., W. Abtew, and T. Desalegne, 2008: Flow analysis and characterization of the Blue Nile River basin system. Proc. Workshop on Hydrology and Ecology of the Nile River Basin under Extreme Conditions, Addis Ababa, Ethiopia, National Science Foundation, 113–126.

  • Mishra, V., K. A. Cherkauer, D. Niyogi, M. Lei, B. C. Pijanowski, D. K. Ray, L. C. Bowling, and G. Yang, 2010: A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States. Int. J. Climatol., 30, 2025–2044, doi:10.1002/joc.2095.

    • Search Google Scholar
    • Export Citation
  • Oki, T., E. M. Blyth, E. H. Berbery, and D. Alcaraz-Segura, 2013: Land use and land cover changes and their impacts on hydroclimate, ecosystems and society. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, G. R. Asrar and J. W. Hurrell, Eds., Springer, 185–203, doi:10.1007/978-94-007-6692-1_7.

  • Oncley, S. P., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 1–28, doi:10.1007/s10546-007-9161-1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., G. Marland, R. A. Betts, T. N. Chase, J. L. Eastman, J. O. Niles, D. Niyogi, and S. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc. London, A360, 1705–1719, doi:10.1098/rsta.2002.1027.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., L. Bounoua, R. S. DeFries, D. C. Morton, L. O. Anderson, W. Mauser, and C. A. Klink, 2006: The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil. Earth Interact., 10, doi:10.1175/EI176.1.

    • Search Google Scholar
    • Export Citation
  • Roerink, G. J., Z. Su, and M. Menenti, 2000: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth, B25, 147–157, doi:10.1016/S1464-1909(99)00128-8.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502–509, doi:10.1126/science.275.5299.502.

    • Search Google Scholar
    • Export Citation
  • Sterling, S. M., 2005: The impact of anthropogenic global land cover transformation on the land–atmosphere fluxes of the water and carbon cycles. Ph.D. dissertation, Duke University, 424 pp.

  • Sterling, S. M., A. Ducharne, and J. Polcher, 2013: The impact of global land-cover change on the terrestrial water cycle. Nat. Climate Change, 3, 385–390, doi:10.1038/nclimate1690.

    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 85–100, doi:10.5194/hess-6-85-2002.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., C. J. Kucharik, and J. A. Foley, 2004: Effects of land cover change on the energy and water balance of the Mississippi River basin. J. Hydrometeor., 5, 640–655, doi:10.1175/1525-7541(2004)005<0640:EOLCCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Randow, C., and Coauthors, 2004: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol., 78, 5–26, doi:10.1007/s00704-004-0041-z.

    • Search Google Scholar
    • Export Citation
  • Wang, X. T., W. D. Guo, Z. Zhong, and X. Y. Cui, 2009: Long term trends of soil moisture and temperature change in East China in relationship with climate background. Adv. Earth Sci., 24, 181–191.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184–194, doi:10.1080/02723646.1981.10642213.

  • Wilson, K. B., and Coauthors, 2002: Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res., 38, 1294, doi:10.1029/2001WR000989.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan, 2011: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ., 115, 1171–1187, doi:10.1016/j.rse.2011.01.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., S. Wang, and G. Wei, 2003: A study on physical parameters of local land-surface processes on the Gobi in Northwest China. Chin. J. Geophys., 46, 883–895, doi:10.1002/cjg2.408.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and Coauthors, 2010: Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland. Soil Tillage Res., 109, 75–86, doi:10.1016/j.still.2010.04.005.

    • Search Google Scholar
    • Export Citation
  • Zhuang, D., J. Liu, and M. Liu, 1999: Research activities on land-use/land cover in the past ten years in China using space technology. Chin. Geogr. Sci., 9, 330–334, doi:10.1007/s11769-999-0006-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 520 177 21
PDF Downloads 319 65 7