Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model

Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
,
Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
,
Adam H. Sobel Department of Earth and Environmental Sciences, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
, and
Ming Zhao NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclone genesis indices (TCGIs) are functions of the large-scale environment that are designed to be proxies for the probability of tropical cyclone (TC) genesis. While the performance of TCGIs in the current climate can be assessed by direct comparison to TC observations, their ability to represent future TC activity based on projections of the large-scale environment cannot. Here the authors examine the performance of TCGIs in high-resolution atmospheric model simulations forced with sea surface temperatures (SST) of future, warmer climate scenarios. They investigate whether the TCGIs derived for the present climate can, when computed from large-scale fields taken from future climate simulations, capture the simulated global mean decreases in TC frequency. The TCGIs differ in their choice of environmental predictors, and several choices of predictors perform well in the present climate. However, some TCGIs that perform well in the present climate do not accurately reproduce the simulated future decrease in TC frequency. This decrease is captured when the humidity predictor is the column saturation deficit rather than relative humidity. Using saturation deficit with relative SST as the other thermodynamic predictor overpredicts the TC frequency decrease, while using potential intensity in place of relative SST as the other thermodynamic predictor gives a good prediction of the decrease’s magnitude. These positive results appear to depend on the spatial and seasonal patterns in the imposed SST changes; none of the indices capture correctly the frequency decrease in simulations with spatially uniform climate forcings, whether a globally uniform increase in SST of 2 K, or a doubling of CO2 with no change in SST.

Corresponding author address: Suzana J. Camargo, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, Palisades, NY 10960. E-mail: suzana@ldeo.columbia.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Abstract

Tropical cyclone genesis indices (TCGIs) are functions of the large-scale environment that are designed to be proxies for the probability of tropical cyclone (TC) genesis. While the performance of TCGIs in the current climate can be assessed by direct comparison to TC observations, their ability to represent future TC activity based on projections of the large-scale environment cannot. Here the authors examine the performance of TCGIs in high-resolution atmospheric model simulations forced with sea surface temperatures (SST) of future, warmer climate scenarios. They investigate whether the TCGIs derived for the present climate can, when computed from large-scale fields taken from future climate simulations, capture the simulated global mean decreases in TC frequency. The TCGIs differ in their choice of environmental predictors, and several choices of predictors perform well in the present climate. However, some TCGIs that perform well in the present climate do not accurately reproduce the simulated future decrease in TC frequency. This decrease is captured when the humidity predictor is the column saturation deficit rather than relative humidity. Using saturation deficit with relative SST as the other thermodynamic predictor overpredicts the TC frequency decrease, while using potential intensity in place of relative SST as the other thermodynamic predictor gives a good prediction of the decrease’s magnitude. These positive results appear to depend on the spatial and seasonal patterns in the imposed SST changes; none of the indices capture correctly the frequency decrease in simulations with spatially uniform climate forcings, whether a globally uniform increase in SST of 2 K, or a doubling of CO2 with no change in SST.

Corresponding author address: Suzana J. Camargo, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, Palisades, NY 10960. E-mail: suzana@ldeo.columbia.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Save
  • Akaike, H., 1973: Information theory and an extension of the maximum likelihood principle. Proc. Second Int. Symp. on Information Theory, Budapest, Hungary, Akademiai Kiadó, 267281.

  • Bell, R., J. Strachan, P. L. Vidale, K. Hodges, and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 79667980, doi:10.1175/JCLI-D-12-00749.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454–458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., H. Böttger, and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34A, 440457, doi:10.1111/j.2153-3490.1982.tb01833.x.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, doi:10.1029/2001JD000780.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, doi:10.1175/JCLI-D-11-00619.1.

    • Search Google Scholar
    • Export Citation
  • Bye, J., and K. Keay, 2008: A new hurricane index for the Caribbean. Interciencia,33, 556–560.

  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclones in atmospheric general circulation models. Tellus, 57A, 589604, doi:10.1111/j.1600-0870.2005.00117.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., H. Li, and L. Sun, 2007a: Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model. Int. J. Climatol., 27, 311325, doi:10.1002/joc.1400.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Search Google Scholar
    • Export Citation
  • Cameron, A. C., and F. A. G. Windmeijer, 1996: R-squared measure for count data regression models with applications to health-care utilization. J. Bus. Econ. Stat., 14, 209220.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J.-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377399, doi:10.1007/s00382-006-0135-7.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2(1), doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Extended Abstracts, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240241. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, doi:10.1175/JCLI-D-11-00050.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G., and C. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617627, doi:10.1007/s00382-013-1713-0.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., P. Marchesiello, C. E. Menkes, J. Lefévre, E. M. Vincent, M. Lengaigne, and F. Chauvin, 2011: Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability. J. Climate, 24, 325, doi:10.1175/2010JCLI3559.1.

    • Search Google Scholar
    • Export Citation
  • JTWC, cited2013: Joint typhoon warning center tropical cyclone best track data site. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/.]

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437441, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., G. A. Vecchi, T. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 1549–1565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Kotal, S. D., P. K. Kundu, and S. K. R. Bhowmik, 2009: Analysis of cyclogenesis parameter for developing and nondeveloping low-pressure systems over the Indian Sea. Nat. Hazards, 50, 389402, doi:10.1007/s11069-009-9348-5.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., A. Seth, and S. J. Camargo, 2005: The effect of regional climate model domain choice on the simulation of tropical cyclone–like vortices in the southwestern Indian Ocean. J. Climate, 18, 12631274, doi:10.1175/JCLI3324.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21, 21382168, doi:10.1175/2007JCLI1119.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., S. Feuer, A. Hagen, D. A. Glenn, J. Sims, R. Perez, M. Chenoweth, and N. Anderson, 2012: A reanalysis of the 1921–30 Atlantic hurricane database. J. Climate, 25, 865885, doi:10.1175/JCLI-D-11-00026.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and S. J. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125141, doi:10.1007/s00382-008-0380-z.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclonegenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, doi:10.1007/s00382-011-1126-x.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • NHC, cited 2013: National Hurricane Center best track data. [Available online at http://www.nhc.noaa.gov/data/#hurdat.]

  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, doi:10.1002/qj.170.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and A. H. Sobel, 2011: The effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193, doi:10.1175/2010JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011: Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett.,38, L04805, doi:10.1029/2010GL046297.

  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst.,4, M04001, doi:10.1029/2011MS000099.

  • Roberts, M. J., and Coauthors, 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, 22, 25412556, doi:10.1175/2008JCLI2537.1.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343, doi:10.1023/A:1005386312622.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., I. G. Watterson, and J. L. Evans, 1992: Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climates. Geophys. Res. Lett., 19, 18311834, doi:10.1029/92GL02149.

    • Search Google Scholar
    • Export Citation
  • Sall, S. M., H. Sauvageot, A. T. Gaye, A. Viltard, and P. de Felice, 2006: A cyclogenesis index for tropical Atlantic off the African coasts. Atmos. Res., 79, 123147, doi:10.1016/j.atmosres.2005.05.004.

    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000372, in press.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and S. J. Camargo, 2014: Environmental control of tropical cyclones in CMIP5: A ventilation perspective. J. Adv. Model. Earth Syst.,6, 115–128, doi:10.1002/2013MS000294.

  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett.,39, L02801, doi:10.1029/2011GL050368.

  • Tippett, M. K., A. H. Sobel, S. J. Camargo, and J. T. Allen, 2014: An empirical relation between U.S. tornado activity and monthly environmental parameters. J. Climate,27, 2983–2999, doi:10.1175/JCLI-D-13-00345.1.

  • Tory, K. J., S. S. Chand, R. A. Dare, and J. L. McBride, 2013a: An assessment of a model-, grid-, and basin-independent tropical cyclone detection scheme in selected CMIP3 global climate models. J. Climate, 26, 55085522, doi:10.1175/JCLI-D-12-00511.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013b: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 99469959, doi:10.1175/JCLI-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science,31, 687–689, doi:10.1126/science.1164396.

  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statististical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate,26, 3231–3240, doi:10.1175/JCLI-D-12-00441.1.

  • Vitart, F., and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212537, doi:10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760, doi:10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16, 39323945, doi:10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., S. Lavender, H. Murakami, E. Scoccimarro, L.-P. Caron, and M. Ghantous, 2010: The Tropical Cyclone climate Model Intercomparison Project. Hurricanes and Climate Change, Vol. 2. Springer Verlag, 1–24.

  • Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585599, doi:10.1007/s00382-012-1298-z.

    • Search Google Scholar
    • Export Citation
  • Waters, J. J., J. L. Evans, and C. E. Forest, 2012: Large-scale diagnostics of tropical cyclogenesis potential using environment variability metrics and logistic regression models. J. Climate, 25, 60926107, doi:10.1175/JCLI-D-11-00359.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 1613–1627, doi:10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538, doi:10.2151/jmsj.87.525.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayabu, and J. C. L. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dyn., 33, 665683, doi:10.1007/s00382-009-0593-9.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1495 528 91
PDF Downloads 902 345 30