Sensitivity of the Amundsen Sea Low to Stratospheric Ozone Depletion

Ryan L. Fogt Scalia Laboratory for Atmospheric Analysis and Department of Geography, Ohio University, Athens, Ohio

Search for other papers by Ryan L. Fogt in
Current site
Google Scholar
PubMed
Close
and
Elizabeth A. Zbacnik Scalia Laboratory for Atmospheric Analysis and Department of Geography, Ohio University, Athens, Ohio

Search for other papers by Elizabeth A. Zbacnik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dramatic sea ice loss in the Amundsen and Bellingshausen Seas and regional warming in West Antarctica and the Antarctica Peninsula have been observed over the last few decades. Both of these changes are strongly influenced by the presence of the Amundsen Sea low (ASL), a climatological region of low pressure in the Amundsen Sea. Studies have demonstrated a deepening of the ASL, particularly in austral spring and to a lesser extent autumn, the former related to decreases in the underlying cyclone central pressures and the latter previously suggested to be due to stratospheric ozone depletion.

This study further investigates the sensitivity of the ASL to stratospheric ozone depletion using geopotential height from a suite of chemistry–climate models (CCMs) as well as historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Overall, both model types capture the mean characteristics of the ASL, although they have notable positive height biases at 850 hPa and a subdued seasonal cycle in its longitudinal position. Comparing across model simulations, it is observed that there is a pronounced influence of stratospheric ozone depletion in the vicinity of the ASL in the stratosphere through the lower troposphere during austral summer, consistent with the positive phase of the southern annular mode. In the autumn, the authors note a weaker, secondary influence of stratospheric ozone depletion on the ASL only in the CMIP5 simulations.

Corresponding author address: Ryan L. Fogt, Department of Geography, Ohio University, 122 Clippinger Laboratories, Athens, OH 45701. E-mail: fogtr@ohio.edu

Abstract

Dramatic sea ice loss in the Amundsen and Bellingshausen Seas and regional warming in West Antarctica and the Antarctica Peninsula have been observed over the last few decades. Both of these changes are strongly influenced by the presence of the Amundsen Sea low (ASL), a climatological region of low pressure in the Amundsen Sea. Studies have demonstrated a deepening of the ASL, particularly in austral spring and to a lesser extent autumn, the former related to decreases in the underlying cyclone central pressures and the latter previously suggested to be due to stratospheric ozone depletion.

This study further investigates the sensitivity of the ASL to stratospheric ozone depletion using geopotential height from a suite of chemistry–climate models (CCMs) as well as historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Overall, both model types capture the mean characteristics of the ASL, although they have notable positive height biases at 850 hPa and a subdued seasonal cycle in its longitudinal position. Comparing across model simulations, it is observed that there is a pronounced influence of stratospheric ozone depletion in the vicinity of the ASL in the stratosphere through the lower troposphere during austral summer, consistent with the positive phase of the southern annular mode. In the autumn, the authors note a weaker, secondary influence of stratospheric ozone depletion on the ASL only in the CMIP5 simulations.

Corresponding author address: Ryan L. Fogt, Department of Geography, Ohio University, 122 Clippinger Laboratories, Athens, OH 45701. E-mail: fogtr@ohio.edu
Save
  • Akiyoshi, H., and Coauthors, 2009: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios. J. Geophys. Res., 114, D03103, doi:10.1029/2007JD009261.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, doi:10.1175/JCLI3774.1.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., J. C. Scott, K. Kreher, and R. L. McKenzie, 2001: Global trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978–1998. J. Geophys. Res., 106, 23 02923 042, doi:10.1029/2001JD900220.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., H. Shiona, and H. Eskes, 2005: Indicators of Antarctic ozone depletion. Atmos. Chem. Phys., 5, 26032615, doi:10.5194/acp-5-2603-2005.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2013: Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J. Geophys. Res. Atmos., 118, 11 481–11 492, doi:10.1002/jgrd.50860.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745756, doi:10.1007/s003820050195.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398–403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report. SPARC Newsletter, No. 30, SPARC Office, Toronto, ON, Canada, 20–26.

  • Fogt, R. L., J. Perlwitz, A. J. Monaghan, D. H. Bromwich, J. M. Jones, and G. J. Marshall, 2009a: Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J. Climate, 22, 53465365, doi:10.1175/2009JCLI2786.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., J. Perlwitz, S. Pawson, and M. A. Olsen, 2009b: Intra-annual relationships between polar ozone and the SAM. Geophys. Res. Lett., 36, L04707, doi:10.1029/2008GL036627.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012: The characteristic variability and connection to the underlying synoptic activity of the Amundsen – Bellingshausen Seas Low. J. Geophys. Res., 117, D07111, doi:10.1029/2011JD017337.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. C. Fyfe, and D. E. Parker, 2013: Attribution of observed sea level pressure trends to greenhouse gases, aerosol, and ozone change. Geophys. Res. Lett., 40, 23022306, doi:10.1002/grl.50500.

    • Search Google Scholar
    • Export Citation
  • Hio, Y., and S. Yoden, 2005: Interannual variations of the seasonal march in the Southern Hemisphere stratosphere for 1979–2002 and characterization of the unprecedented year in 2002. J. Atmos. Sci., 62, 567580, doi:10.1175/JAS-3333.1.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Kindem, I. T., and B. Christiansen, 2001: Tropospheric response to stratospheric ozone loss. Geophys. Res. Lett., 28, 15471551, doi:10.1029/2000GL012552.

    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T. A., W. M. Connolley, and J. Turner, 2001: The role of the non-axisymmetric Antarctic orography in forcing the observed pattern of variability of the Antarctic climate. Geophys. Res. Lett., 28, 41114114, doi:10.1029/2001GL013465.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2007: Half-century seasonal relationships between the southern annular mode and Antarctic temperatures. Int. J. Climatol., 27, 373383, doi:10.1002/joc.1407.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate, 19, 53885404, doi:10.1175/JCLI3844.1.

    • Search Google Scholar
    • Export Citation
  • Massom, R., S. Stammerjohn, W. Lefebvre, S. Harangozo, N. Adams, T. Scambos, M. Pook, and C. Fowler, 2008: West Antarctic Peninsula sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. J. Geophys. Res., 113, C02S20, doi:10.1029/2007JC004239.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2010: Review of the formulation of present-generation stratospheric chemistry–climate models and associated external forcings. J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, R., N. Lewis, S. McIntyre, and J. Condon, 2011: Improved methods for PCA-based reconstructions: Case study using the Steig et al. (2009) Antarctic temperature reconstruction. J. Climate, 24, 20992115, doi:10.1175/2010JCLI3656.1.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2005: JRA-25: Japanese 25-Year Re-Analysis Project: Progress and status. Quart. J. Roy. Meteor. Soc., 131, 32593268, doi:10.1256/qj.05.88.

    • Search Google Scholar
    • Export Citation
  • Orr, A., G. J. Marshall, J. C. R. Hunt, J. Sommeria, C.-G. Wang, N. P. M. van Lipzig, D. Cresswall, and J. C. King, 2008: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of the westerly circumpolar winds. J. Atmos. Sci., 65, 13961413, doi:10.1175/2007JAS2498.1.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795811, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479, doi:10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, L23212, doi:10.1029/2004GL020365.

  • Roscoe, H. K., J. D. Shanklin, and S. R. Colwell, 2005: Has the Antarctic vortex split before 2002? J. Atmos. Sci., 62, 581588, doi:10.1175/JAS-3331.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2014: The Antarctic sea ice response to the ozone hole in climate models. J. Climate, 27, 13361342, doi:10.1175/JCLI-D-13-00590.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, and J. F. Scinocca, 2010: Does the ocean impact the atmospheric response to stratospheric ozone depletion? Geophys. Res. Lett., 37, L12706, doi:10.1029/2010GL043773.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry–climate models. V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, 426 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, doi:10.1038/nature07669.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., Q. Ding, D. S. Battisti, and A. Jenkins, 2012: Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol., 53, 1928, doi:10.3189/2012AoG60A110.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatol., 33, 1818–1829, doi:10.1002/joc.3558.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, World Meteorological Organization/United Nations Environmental Programme, 516 pp. [Available online at http://www.esrl.noaa.gov/csd/assessments/ozone/2010/report.html.]

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen, 2002: Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, 3041, doi:10.1029/2000JC000733.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 104 7
PDF Downloads 115 48 2