Influence of the Background State on Rossby Wave Propagation into the Great Lakes Region Based on Observations and Model Simulations

Kathleen D. Holman Nelson Institute Center for Climatic Research, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Kathleen D. Holman in
Current site
Google Scholar
PubMed
Close
,
David J. Lorenz Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David J. Lorenz in
Current site
Google Scholar
PubMed
Close
, and
Michael Notaro Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Michael Notaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors investigate the relationship between hydrology in the Great Lakes basin—namely, overlake precipitation and transient Rossby waves—using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data and historical output from phase 3 of the Coupled Model Intercomparison Project (CMIP3). The preferred path of observed Rossby wave trains associated with overlake precipitation on Lake Superior depends strongly on season and appears to be related to the time-mean, upper-level flow. During summer and fall, the Northern Hemisphere extratropical jet is relatively narrow and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region travel along the extratropical Pacific and Atlantic jets. During other months, the Pacific jet is relatively broad, which allows more wave activity originating in the tropics to penetrate into the midlatitudes and influence Lake Superior precipitation. Analysis is extended to CMIP3 models and is intended to 1) further understanding of how variations in the mean state influence transient Rossby waves and 2) assess models’ ability to capture observed features, such as wave origin and track. Results indicate that Rossby wave train propagation in twentieth-century simulations can significantly differ by model. Unlike observations, some models do not produce a well-defined jet across the Pacific Ocean during summer and autumn. In these models, some Rossby waves affecting the Great Lakes region originate in the tropics. Collectively, observations and model results show the importance of the time-mean upper-level flow on Rossby wave propagation and therefore on the relative influence of the tropics versus the extratropics on the hydroclimate of the Great Lakes region.

Corresponding author address: Kathleen D. Holman, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: kathleendeeholman@gmail.com

Center for Climatic Research Publication Number 1205.

Abstract

The authors investigate the relationship between hydrology in the Great Lakes basin—namely, overlake precipitation and transient Rossby waves—using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data and historical output from phase 3 of the Coupled Model Intercomparison Project (CMIP3). The preferred path of observed Rossby wave trains associated with overlake precipitation on Lake Superior depends strongly on season and appears to be related to the time-mean, upper-level flow. During summer and fall, the Northern Hemisphere extratropical jet is relatively narrow and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region travel along the extratropical Pacific and Atlantic jets. During other months, the Pacific jet is relatively broad, which allows more wave activity originating in the tropics to penetrate into the midlatitudes and influence Lake Superior precipitation. Analysis is extended to CMIP3 models and is intended to 1) further understanding of how variations in the mean state influence transient Rossby waves and 2) assess models’ ability to capture observed features, such as wave origin and track. Results indicate that Rossby wave train propagation in twentieth-century simulations can significantly differ by model. Unlike observations, some models do not produce a well-defined jet across the Pacific Ocean during summer and autumn. In these models, some Rossby waves affecting the Great Lakes region originate in the tropics. Collectively, observations and model results show the importance of the time-mean upper-level flow on Rossby wave propagation and therefore on the relative influence of the tropics versus the extratropics on the hydroclimate of the Great Lakes region.

Corresponding author address: Kathleen D. Holman, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: kathleendeeholman@gmail.com

Center for Climatic Research Publication Number 1205.

Save
  • Ambaum, M., 2008: Unimodality of wave amplitude in the Northern Hemisphere. J. Atmos. Sci., 65, 10771086, doi:10.1175/2007JAS2298.1.

  • Ambaum, M., and P. Athanasiadis, 2007: The response of a uniform horizontal temperature gradient to heating. J. Atmos. Sci., 64, 37083716, doi:10.1175/JAS4038.1.

    • Search Google Scholar
    • Export Citation
  • Assel, R., J. Janowiak, D. Boyce, C. O’Connors, F. Quinn, and D. Norton, 2000: Laurentian Great Lakes ice and weather conditions for the 1998 El Niño winter. Bull. Amer. Meteor. Soc., 81, 703717, doi:10.1175/1520-0477(2000)081<0703:LGLIAW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E., and D. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, doi:10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, doi:10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., C. Smith, and J. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, doi:10.1256/qj.03.133.

    • Search Google Scholar
    • Export Citation
  • Coleman, J., and J. Rogers, 2003: Ohio River valley winter moisture conditions associated with the Pacific–North American teleconnection pattern. J. Climate, 16, 969981, doi:10.1175/1520-0442(2003)016<0969:ORVWMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. Davies, 2007: A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633649, doi:10.1175/JCLI4029.1.

    • Search Google Scholar
    • Export Citation
  • Croley, T., and H. Hartmann, 1985: Resolving Thiessen polygons. J. Hydrol., 76 (3–4), 363379, doi:10.1016/0022-1694(85)90143-X.

  • Croley, T., and T. Hunter, 1994: Great Lakes monthly hydrologic data. NOAA Tech. Memo. ERL GLERL-83, 83 pp.

  • Danielson, R., J. Gyakum, and D. Straub, 2006: A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Mon. Wea. Rev., 134, 15491567, doi:10.1175/MWR3173.1.

    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. Lorenz, D. Vimont, and J. Martin, 2013a: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, doi:10.1175/JCLI-D-12-00337.1.

    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. Lorenz, D. Vimont, and J. Martin, 2013b: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 49304946, doi:10.1175/JCLI-D-12-00359.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455467, doi:10.1002/qj.225.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., and T. Yasunari, 2009: The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon. Mon. Wea. Rev., 137, 22862304, doi:10.1175/2009MWR2826.1.

    • Search Google Scholar
    • Export Citation
  • Ghanbari, R., and H. Bravo, 2008: Coherence between atmospheric teleconnections, Great Lakes water levels, and regional climate. Adv. Water Resour., 31, 12841298, doi:10.1016/j.advwatres.2008.05.002.

    • Search Google Scholar
    • Export Citation
  • GLISA, cited 2014: Representation of the Great Lakes in CMIP3 climate models. [Available online at http://www.glisaclimate.org/project/downscaled-climate-projections/wiki/representation-of-the-great-lakes-in-cmip3-climate.]

  • Grover, E., and P. Sousounis, 2002: The influence of large-scale flow on fall precipitation systems in the Great Lakes basin. J. Climate, 15, 19431956, doi:10.1175/1520-0442(2002)015<1943:TIOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanrahan, J., S. Kravtsov, and P. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett.,37, L01701, doi:10.1029/2009GL041707.

  • Held, I., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Holman, K., and S. Vavrus, 2012: Understanding simulated extreme precipitation events in Madison, Wisconsin, and the role of moisture flux convergence during the late twentieth and twenty-first centuries. J. Hydrometeor., 13, 877894, doi:10.1175/JHM-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Holman, K., A. Gronewold, M. Notaro, and A. Zarrin, 2012: Improving historical precipitation estimates over the Lake Superior basin. Geophys. Res. Lett.,39, L03405, doi:10.1029/2011GL050468.

  • Hoskins, B., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., A. Simmons, and D. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103, 553567, doi:10.1002/qj.49710343802.

    • Search Google Scholar
    • Export Citation
  • Isard, S., J. Angel, and G. VanDyke, 2000: Zones of origin for Great Lakes cyclones in North America, 1899–1996. Mon. Wea. Rev., 128, 474485, doi:10.1175/1520-0493(2000)128<0474:ZOOFGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johanson, C., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, doi:10.1175/2008JCLI2620.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2005: Tropical–extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Mon. Wea. Rev., 133, 27592776, doi:10.1175/MWR2999.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, doi:10.2151/jmsj.87.561.

    • Search Google Scholar
    • Export Citation
  • Kushner, P., I. Held, and T. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, doi:10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenters, J., 2004: Trends in the Lake Superior water budget since 1948: A weakening seasonal cycle. J. Great Lakes Res., 30, 2040, doi:10.1016/S0380-1330(04)70375-5.

    • Search Google Scholar
    • Export Citation
  • Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48, 17181732, doi:10.1175/1520-0469(1991)048<1718:SAEOBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D., and E. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res.,112, D10119, doi:10.1029/2006JD008087.

  • Lu, J., G. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett.,34, L06805, doi:10.1029/2006GL028443.

  • Martius, O., C. Schwierz, and H. Davies, 2008: Far-upstream precursors of heavy precipitation events on the Alpine south-side. Quart. J. Roy. Meteor. Soc., 134, 417428, doi:10.1002/qj.229.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, doi:10.1175/2009JAS2995.1.

  • Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, doi:10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norton, D., and S. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., W. Wang, and W. Gong, 2006: Model and observational analysis of the northeast U.S. regional climate and its relationship to the PNA and NAO patterns during early winter. Mon. Wea. Rev., 134, 34793505, doi:10.1175/MWR3234.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., A. Zarrin, S. Vavrus, and V. Bennington, 2013: Simulation of heavy lake-effect snowstorms across the Great Lakes basin by RegCM4: Synoptic climatology and variability. Mon. Wea. Rev., 141, 19902014, doi:10.1175/MWR-D-11-00369.1.

    • Search Google Scholar
    • Export Citation
  • Opsteegh, J., and H. Van den Dool, 1980: Seasonal differences in the stationary response of a linearized primitive equation model: Prospects for long-range weather forecasting? J. Atmos. Sci., 37, 21692185, doi:10.1175/1520-0469(1980)037<2169:SDITSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ouergli, A., 2002: Hilbert transform from wavelet analysis to extract the envelope of an atmospheric mode: Examples. J. Atmos. Oceanic Technol., 19, 10821086, doi:10.1175/1520-0426(2002)019<1082:HTFWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • PCMDI, cited2014: CMIP3 climate model documentation, references, and links. [Available online at http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.]

  • Plumb, R., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 16571678, doi:10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S., 1994: Association between winter precipitation and water level fluctuations in the Great Lakes and atmospheric circulation patterns. J. Climate, 7, 16931706, doi:10.1175/1520-0442(1994)007<1693:ABWPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S., and R. Assel, 2000: Atmospheric teleconnection patterns and severity of winters in the Laurentian Great Lakes basin. Atmos.–Ocean, 38, 601635, doi:10.1080/07055900.2000.9649661.

    • Search Google Scholar
    • Export Citation
  • Rogers, J., and J. Coleman, 2003: Interactions between the Atlantic multidecadal oscillation, El Niño/La Niña, and the PNA in winter Mississippi valley stream flow. Geophys. Res. Lett., 30, 1518, doi:10.1029/2003GL017216.

    • Search Google Scholar
    • Export Citation
  • Santos, J., J. Corte-Real, U. Ulbrich, and J. Palutikof, 2007: European winter precipitation extremes and large-scale circulation: A coupled model and its scenarios. Theor. Appl. Climatol., 87 (1–4), 85102, doi:10.1007/s00704-005-0224-2.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., S. Dirren, and H. Davies, 2004: Forced waves on a zonally aligned jet stream. J. Atmos. Sci., 61, 7387, doi:10.1175/1520-0469(2004)061<0073:FWOAZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and J. Liptak, 2012: Propagating atmospheric patterns associated with Midwest winter precipitation. J. Hydrometeor., 13, 13711382, doi:10.1175/JHM-D-11-0111.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., C. Smith, and C. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S., L. Hipps, R. Gillies, X. Jiang, and A. Moller, 2010: Circumglobal teleconnection and early summer rainfall in the US Intermountain West. Theor. Appl. Climatol., 102 (3–4), 245252, doi:10.1007/s00704-010-0260-4.

    • Search Google Scholar
    • Export Citation
  • Watras, C., J. Read, K. Holman, Z. Liu, Y.-Y. Song, A. Watras, S. Morgan, and E. Stanley, 2014: Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett., 41, 456462, doi:10.1002/2013GL058679.

    • Search Google Scholar
    • Export Citation
  • Webster, P., and J. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, doi:10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yun, K., S. Kim, K. Ha, and M. Watanabe, 2011: Effects of subseasonal basic state changes on Rossby wave propagation during northern summer. J. Geophys. Res.,116, D24102, doi:10.1029/2011JD016258.

  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, doi:10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
  • Zimin, A., I. Szunyogh, D. Patil, B. Hunt, and E. Ott, 2003: Extracting envelopes of Rossby wave packets. Mon. Wea. Rev., 131, 10111017, doi:10.1175/1520-0493(2003)131<1011:EEORWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 78 5
PDF Downloads 163 49 4