An Object-Based Approach for Quantification of GCM Biases of the Simulation of Orographic Precipitation. Part I: Idealized Simulations

M. Soner Yorgun Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by M. Soner Yorgun in
Current site
Google Scholar
PubMed
Close
and
Richard B. Rood Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Richard B. Rood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An object-based evaluation method to quantify biases of general circulation models (GCMs) is introduced using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Idealized experiments with different topography are designed to reproduce the spatial characteristics of precipitation biases that were present in Atmospheric Model Intercomparison Project simulations using the CAM finite volume (FV) and CAM Eulerian spectral dynamical cores. Precipitation features are identified as “objects” to understand the causes of the differences between CAM FV and CAM Eulerian spectral dynamical cores. Three different mechanisms of precipitation were simulated in idealized experiments: stable upslope ascent, local surface fluxes, and resolved downstream waves. The results indicated stronger sensitivity of the CAM Eulerian spectral dynamical core to resolution. The application of spectral filtering to topography is shown to have a large effect on the CAM Eulerian spectral model simulation. The removal of filtering improved the results when the scales of the topography were resolvable. However, it reduced the simulation capability of the CAM Eulerian spectral dynamical core because of Gibbs oscillations, leading to unusable results. A clear perspective about models biases is provided from the quantitative evaluation of objects extracted from these simulations and will be further discussed in part II of this study.

Corresponding author address: M. Soner Yorgun, Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: yorgun@umich.edu

Abstract

An object-based evaluation method to quantify biases of general circulation models (GCMs) is introduced using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Idealized experiments with different topography are designed to reproduce the spatial characteristics of precipitation biases that were present in Atmospheric Model Intercomparison Project simulations using the CAM finite volume (FV) and CAM Eulerian spectral dynamical cores. Precipitation features are identified as “objects” to understand the causes of the differences between CAM FV and CAM Eulerian spectral dynamical cores. Three different mechanisms of precipitation were simulated in idealized experiments: stable upslope ascent, local surface fluxes, and resolved downstream waves. The results indicated stronger sensitivity of the CAM Eulerian spectral dynamical core to resolution. The application of spectral filtering to topography is shown to have a large effect on the CAM Eulerian spectral model simulation. The removal of filtering improved the results when the scales of the topography were resolvable. However, it reduced the simulation capability of the CAM Eulerian spectral dynamical core because of Gibbs oscillations, leading to unusable results. A clear perspective about models biases is provided from the quantitative evaluation of objects extracted from these simulations and will be further discussed in part II of this study.

Corresponding author address: M. Soner Yorgun, Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: yorgun@umich.edu
Save
  • Airey, M., and M. Hulme, 1995: Evaluating climate model simulations of precipitation: Methods, problems and performance. Prog. Phys. Geogr., 19, 427448, doi:10.1177/030913339501900401.

    • Search Google Scholar
    • Export Citation
  • Bala, G., and Coauthors, 2008: Evaluation of a CCSM3 simulation with a finite volume dynamical core for the atmosphere at 1° latitude × 1.25° longitude resolution. J. Climate, 21, 14671486, doi:10.1175/2007JCLI2060.1.

    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, doi:10.1175/WAF858.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and D. P. Lettenmaier, 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121, 11951214, doi:10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., E. H. Berbery, and R. W. Higgins, 2011: Modulation of cold-season U.S. daily precipitation by the Madden–Julian oscillation. J. Climate, 24, 51575166, doi:10.1175/2011JCLI4018.1.

    • Search Google Scholar
    • Export Citation
  • Bhushan, S., and A. P. Barros, 2007: A numerical study to investigate the relationship between moisture convergence patterns and orography in central Mexico. J. Hydrometeor., 8, 12641284, doi:10.1175/2007JHM791.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Y. C. Sud, S. D. Schubert, and G. K. Walker, 2003: Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res., 108, 8614, doi:10.1029/2002JD003095.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Douglass, B. P., 2000: Real-Time UML: Developing Efficient Objects for Embedded Systems. Addison Wesley, 328 pp.

  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, doi:10.1016/S0022-1694(00)00343-7.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378, doi:10.1029/96RG01927.

  • Frankhauser, J. C., 1965: A comparison of kinematically computed precipitation with observed convective rainfall. National Severe Storms Laboratory Rep. 25, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, doi:10.1175/2009WAF2222269.1.

    • Search Google Scholar
    • Export Citation
  • Holman, K. D., and S. J. Vavrus, 2012: Understanding simulated extreme precipitation events in Madison, Wisconsin, and the role of moisture flux convergence during the late twentieth and twenty-first centuries. J. Hydrometeor., 13, 877894, doi:10.1175/JHM-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, doi:10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, H. R., 1970: On the relationship between horizontal moisture convergence and convective cloud formation. ESSA Tech. Memo. ERLTM-NSSL 45, 29 pp.

  • Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Springer-Verlag, 381–493.

  • Jablonowski, C., P. H. Lauritzen, R. D. Nair, and M. Taylor, 2008: Idealized test cases for the dynamical cores of atmospheric general circulation models: A proposal for the NCAR ASP 2008 summer colloquium. NCAR Tech. Rep., 74 pp.

  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, doi:10.1002/qj.49712354416.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., and S. Sandgathe, 2006: Cluster analysis for verification of precipitation fields. Wea. Forecasting, 21, 824838, doi:10.1175/WAF948.1.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., and A. Henderson-Sellers, 2005: A Climate Modelling Primer. Wiley, 296 pp.

  • Micheas, A. C., I. F. Neil, S. A. Lack, and C. K. Wikle, 2007: Cell identification and verification of QPF ensembles using shape analysis techniques. J. Hydrol., 343, 105116, doi:10.1016/j.jhydrol.2007.05.036.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., W. F. Stern, and K. Miyakoda, 1994: Reduction of the Gibbs oscillation in spectral model simulations. J. Climate, 7, 11691183, doi:10.1175/1520-0442(1994)007<1169:ROTGOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 224 pp.

  • Newman, W. R., 1971: The relationship between horizontal moisture convergence and severe storm occurrences. M.S. thesis, School of Meteorology, University of Oklahoma, 54 pp.

  • Posselt, D. J., A. R. Jongeward, C. Y. Hsu, and G. L. Potter, 2012: Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño–La Niña transition. J. Climate, 25, 73137327, doi:10.1175/JCLI-D-11-00724.1.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., D. B. Coleman, N. Mahowald, D. L. Williamson, S. J. Lin, B. A. Boville, and P. Hess, 2006: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19, 22432266, doi:10.1175/JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst.,4, M04001, doi:10.1029/2011MS000099.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Roe, G. H., and M. B. Baker, 2006: Microphysical and geometrical controls on the pattern of orographic precipitation. J. Atmos. Sci., 63, 861880, doi:10.1175/JAS3619.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., C. Beck, J. Grieser, and U. Schneider, 2005: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre Rep., 8 pp.

  • Rutt, I. C., J. Thuburn, and A. Staniforth, 2006: A variational method for orographic filtering in NWP and climate models. Quart. J. Roy. Meteor. Soc., 132, 17951813, doi:10.1256/qj.05.133.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2013: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol.,115, 15–40, doi:10.1007/s00704-013-0860-x.

  • Smith, R. B., 2003: A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282, 29, doi:10.1016/S0022-1694(03)00248-8.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, doi:10.1256/qj.02.133.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, doi:10.1175/2008MWR2415.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241269, doi:10.2151/jmsj.85B.241.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of the 1998 El Niño/2000 La Niña. J. Climate, 18, 24972514, doi:10.1175/JCLI3418.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 62 8
PDF Downloads 71 36 3