Impact of Atmosphere and Land Surface Initial Conditions on Seasonal Forecasts of Global Surface Temperature

Stefano Materia Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Stefano Materia in
Current site
Google Scholar
PubMed
Close
,
Andrea Borrelli Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Andrea Borrelli in
Current site
Google Scholar
PubMed
Close
,
Alessio Bellucci Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Alessio Bellucci in
Current site
Google Scholar
PubMed
Close
,
Andrea Alessandri Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Andrea Alessandri in
Current site
Google Scholar
PubMed
Close
,
Pierluigi Di Pietro Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by Pierluigi Di Pietro in
Current site
Google Scholar
PubMed
Close
,
Panagiotis Athanasiadis Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy

Search for other papers by Panagiotis Athanasiadis in
Current site
Google Scholar
PubMed
Close
,
Antonio Navarra Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by Antonio Navarra in
Current site
Google Scholar
PubMed
Close
, and
Silvio Gualdi Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by Silvio Gualdi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic, and North Pacific benefit significantly from the atmosphere initialization. On the mainland, the effect of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects forecast skill in the following seasons. Winter forecasts in the high-latitude plains benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia.

However, the initialization strategy based on the full value technique may not be the best choice for land surface, since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic initialization for land and atmosphere substantially increases skill and accuracy. However, further developments in the procedure for land surface initialization are required for more accurate seasonal forecasts.

Current affiliation: Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy.

Corresponding author address: Stefano Materia, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale Aldo Moro, 44, Bologna, 40141, Italy. E-mail: stefano.materia@cmcc.it

Abstract

The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic, and North Pacific benefit significantly from the atmosphere initialization. On the mainland, the effect of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects forecast skill in the following seasons. Winter forecasts in the high-latitude plains benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia.

However, the initialization strategy based on the full value technique may not be the best choice for land surface, since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic initialization for land and atmosphere substantially increases skill and accuracy. However, further developments in the procedure for land surface initialization are required for more accurate seasonal forecasts.

Current affiliation: Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy.

Corresponding author address: Stefano Materia, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale Aldo Moro, 44, Bologna, 40141, Italy. E-mail: stefano.materia@cmcc.it
Save
  • Albergel, C., P. de Rosnay, G. Balsamo, L. Isaksen, and J. Muñoz-Sabater, 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 14421460, doi:10.1175/JHM-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., 2006: Effects of land surface and vegetation processes on the climate simulated by an atmospheric general circulation model. Ph.D. thesis, Bologna University Alma Mater Studiorum, 114 pp.

  • Alessandri, A., and A. Navarra, 2008: On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, S. Masina, A. Cherchi, S. Gualdi, A. Navarra, P. Di Pietro, and A. F. Carril, 2010: The INGV–CMCC seasonal prediction system: Improved ocean initial conditions. Mon. Wea. Rev., 138, 29302952, doi:10.1175/2010MWR3178.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, A. Navarra, A. Arribas, M. Déqué, P. Rogel, and A. Weisheimer, 2011: Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: Comparison with DEMETER. Mon. Wea. Rev., 139, 581607, doi:10.1175/2010MWR3417.1.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., P. G. Fogli, M. Vichi, and N. Zeng, 2012: Strengthening of the hydrological cycle in future scenarios: Atmospheric energy and water balance perspective. Earth Syst. Dyn., 3, 199212, doi:10.5194/esd-3-199-2012.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Climate, 24, 65286539, doi:10.1175/2011JCLI4157.1.

    • Search Google Scholar
    • Export Citation
  • Alves, O., M. A. Balmaseda, D. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647667, doi:10.1256/qj.03.25.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Coauthors, 2009: Ocean initialization for seasonal forecasts. Oceanography, 22, 154159, doi:10.5670/oceanog.2009.73.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A. K. Betts, and K. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Masina, P. DiPietro, and A. Navarra, 2007: Using temperature–salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon. Wea. Rev., 135, 37853807, doi:10.1175/2007MWR1821.1.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA Interim archive. Tech. Rep. ERA Rep. Series 1, ECMWF, 16 pp. [Available online at http://old.ecmwf.int/publications/library/do/references/list/782009.]

  • Blender, R., and K. Fraedrich, 2003: Long time memory in global warming simulations. Geophys. Res. Lett., 30, 1769, doi:10.1029/2003GL017666.

    • Search Google Scholar
    • Export Citation
  • Borrelli, A., S. Materia, A. Bellucci, A. Alessandri, and S. Gualdi, 2012: Seasonal Prediction System at CMCC. Research Paper 147, Centro Euro-Mediterraneo sui Cambiamenti Climatici, 17 pp. [Available at http://www.cmcc.it/publications-meetings/publications/research-papers/rp0147-seasonal-prediction-system-at-cmcc.]

  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011: A new index for more accurate winter predictions. Geophys. Res. Lett., 38, L21701, doi:10.1029/2011GL049626.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor., 4, 599610, doi:10.1175/1525-7541(2003)004<0599:TROTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Guo, and X. Gao, 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5, 10111033, doi:10.1175/JHM-388.1.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2003: Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J. Hydrometeor., 4, 10441066, doi:10.1175/1525-7541(2003)004<1044:ATIOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, doi:10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land–atmosphere coupling to recent European summer heatwaves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fogli, P. G., and Coauthors, 2009: INGV-CMCC Carbon (ICC): A Carbon Cycle Earth System Model. CMCC Research Paper 61, 31 pp. [Available at http://www.cmcc.it/publications-meetings/publications/research-papers/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model.]

  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606, doi:10.1175/JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, Z.-Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, and T. DelSole, 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, doi:10.1029/2011GL049945.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, T. DelSole, and R. D. Koster, 2012: Rebound in atmospheric predictability and the role of the land surface. J. Climate, 25, 47444749, doi:10.1175/JCLI-D-11-00651.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and P. S. Schopf, 2008: Ocean–atmosphere basis for seasonal climate forecasting. Seasonal Climate: Forecasting and Managing Risk, A. Troccoli et al., Eds., Springer, 67–89.

  • Hudson, D., O. Alves, H. H. Hendon, and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, doi:10.1007/s00382-010-0763-9.

    • Search Google Scholar
    • Export Citation
  • Iwi, A. M., R. T. Sutton, and W. A. Norton, 2006: Influence of May Atlantic Ocean initial conditions on the subsequent North Atlantic winter climate. Quart. J. Roy. Meteor. Soc., 132, 29772999, doi:10.1256/qj.05.62.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, D. Chen, and T.-W. Park, 2008: Land surface initialization using an offline CLM3 simulation with the GSWP-2 forcing dataset and its impact on CAM3 simulations of the boreal summer climate. J. Hydrometeor., 9, 12311248, doi:10.1175/2008JHM941.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4, 408423, doi:10.1175/1525-7541(2003)4<408:IOLSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2004: Suggestions in the observational record of land–atmosphere feedback operating at seasonal time scales. J. Hydrometeor., 5, 567572, doi:10.1175/1525-7541(2004)005<0567:SITORO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: Contribution of land surface initialization to subseasonal forecast skill: The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., I. S. Kang, and D. H. Choi, 2008: Seasonal climate predictability with tier-one and tier-two prediction systems. Climate Dyn., 31, 403416, doi:10.1007/s00382-007-0264-7.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12, 381388, doi:10.1007/BF00211684.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, I. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation 11, IPSL, 91 pp.

  • Masina, S., P. Di Pietro, A. Storto, and A. Navarra, 2011: Global ocean re-analyses for climate applications. Dyn. Atmos. Oceans, 52, 341366, doi:10.1016/j.dynatmoce.2011.03.006.

    • Search Google Scholar
    • Export Citation
  • Materia, S., P. A. Dirmeyer, Z. Guo, A. Alessandri, and A. Navarra, 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334351, doi:10.1175/2009JHM1162.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., 2002: Ensembles, forecasts and predictability. Ocean Forecasting: Conceptual Basis and Applications, N. Pinardi and J. Woods, Eds., Springer-Verlag, 131–148.

    • Search Google Scholar
    • Export Citation
  • Orth, R., and S. I. Seneviratne, 2012: Analysis of soil moisture memory from observations in Europe. J. Geophys. Res., 117, D15115, doi:10.1029/2011JD017366.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, doi:10.1175/BAMS-89-4-459.

    • Search Google Scholar
    • Export Citation
  • Paolino, D. A., J. L. Kinter, B. P. Kirtman, D. Min, and D. M. Straus, 2012: The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Climate, 25, 10071021, doi:10.1175/2011JCLI3934.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, doi:10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791, doi:10.1175/JCLI3824.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shi, L., H. Hendon, O. Alves, M. Wheeler, D. Anderson, and G. Wang, 2011: On the importance of initializing the stochastic part of the atmosphere for forecasting the 1997/1998 El Niño. Climate Dyn., 37, 313324, doi:10.1007/s00382-010-0933-9.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. C. Kinter, 2006: Predictability of seasonal climate variations: A pedagogical review. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 306–341.

  • Smith, D. M., A. Scaife, and P. Kirtman, 2012: What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett., 7, 015602, doi:10.1088/1748-9326/7/1/015602.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Dulière, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modell., 8, 175201, doi:10.1016/j.ocemod.2003.12.009.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998. Development and forecasts of the 1997/98 El Niño: CLIVAR scientific issues. CLIVAR Exchanges, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 4–14.

  • Trenberth, K. E., and J. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., M. Harrison, D. L. T. Anderson, and S. J. Mason, 2008: Seasonal Climate: Forecasting and Managing Risk. NATO Science Series, Vol. 82, Springer Academic, 499 pp.

  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupled user guide version 2.4. CERFACS Tech. Rep. TR/CMGC/00/10. [Available online at www.cerfacs.fr/3-25801-Technical-Reports.php.]

  • Vialard, J., F. Vitart, M. A. Balmaseda, T. Stockdale, and D. L. T. Anderson, 2005: An ensemble generation method for seasonal forecasting with an ocean–atmosphere coupled model. Mon. Wea. Rev., 133, 441453, doi:10.1175/MWR-2863.1.

    • Search Google Scholar
    • Export Citation
  • Vidard, A., D. L. T. Anderson, and M. Balmaseda, 2007: Impact of ocean observation systems on ocean analysis and seasonal forecasts. Mon. Wea. Rev., 135, 409429, doi:10.1175/MWR3310.1.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, W. Wang, H. H. Juang, and M. Kanamitsu, 2001: Snow–albedo feedback and seasonal climate variability over North America. J. Climate, 14, 42454248, doi:10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, R., K. Mitchell, J. Meng, and M. Ek, 2011: Summer-season forecast experiments with the NCEP Climate Forecast System using different land models and different initial land states. J. Climate, 24, 23192334, doi:10.1175/2010JCLI3797.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 191 44
PDF Downloads 326 133 21