The Surface Diurnal Warm Layer in the Indian Ocean during CINDY/DYNAMO

Adrian J. Matthews Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, United Kingdom

Search for other papers by Adrian J. Matthews in
Current site
Google Scholar
PubMed
Close
,
Dariusz B. Baranowski Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Dariusz B. Baranowski in
Current site
Google Scholar
PubMed
Close
,
Karen J. Heywood Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Karen J. Heywood in
Current site
Google Scholar
PubMed
Close
,
Piotr J. Flatau Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Piotr J. Flatau in
Current site
Google Scholar
PubMed
Close
, and
Sunke Schmidtko Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Sunke Schmidtko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden–Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (>80 W m−2) and low wind speed (<6 m s−1) and preferentially in the inactive stage of the Madden–Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.

Corresponding author address: Dr. Adrian J. Matthews, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: a.j.matthews@uea.ac.uk

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden–Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (>80 W m−2) and low wind speed (<6 m s−1) and preferentially in the inactive stage of the Madden–Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.

Corresponding author address: Dr. Adrian J. Matthews, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: a.j.matthews@uea.ac.uk

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Bellenger, H., and J.-P. Duvel, 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 36293646, doi:10.1175/2008JCLI2598.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., E. Guilyardi, G. Madec, J. M. Slingo, and S. J. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575590, doi:10.1007/s00382-007-0249-6.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., E. Guilyardi, G. Madec, J. M. Slingo, S. J. Woolnough, and J. Cole, 2008: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dyn., 31, 909925, doi:10.1007/s00382-008-0429-z.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D21104, doi:10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Delnore, V. E., 1972: Diurnal variation of temperature and energy budget for the oceanic mixed layer during BOMEX. J. Phys. Oceanogr., 2, 239247, doi:10.1175/1520-0485(1972)002<0239:DVOTAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., J. Sprintall, S. T. Gille, and S. Wijffels, 2012: In situ observations of Madden–Julian oscillation mixed layer dynamics in the Indian and western Pacific Oceans. J. Climate, 25, 23062328, doi:10.1175/JCLI-D-11-00203.1.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386, doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, doi:10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Wang, and S. Weaver, 2013: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., P. J. Minnett, and B. Ward, 2009: Profiles of ocean surface heating (POSH), A new model of upper ocean diurnal warming. J. Geophys. Res., 114, C07017, doi:10.1029/2008JC004825.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185191, doi:10.1029/2004EO190002.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variations of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, doi:10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., and R. Reed, 1976: Heat budget of the upper ocean under light winds. J. Phys. Oceanogr., 6, 972975, doi:10.1175/1520-0485(1976)006<0972:HBOTUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier, 193 pp.

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., S. J. Woolnough, H. Weller, and J. M. Slingo, 2011: The impact of finer-resolution air–sea coupling on the intraseasonal oscillation of the Indian monsoon. J. Climate, 24, 24512468, doi:10.1175/2010JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2004: The atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophys. Res. Lett., 31, L14107, doi:10.1029/2004GL020474.

    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 1994: Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.

  • Moum, J., and Coauthors, 2013: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc.,95, 1185–1199, doi:10.1175/BAMS-D-12-00225.1.

  • Mujumdar, M., K. Salunke, S. A. Rao, M. Ravichandran, and B. N. Goswami, 2011: Diurnal cycle induced amplification of sea surface temperature intraseasonal oscillations over the Bay of Bengal in summer monsoon season. IEEE Geosci. Remote Sens. Lett., 8, 206210, doi:10.1109/LGRS.2010.2060183.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • O’Connor, B. M., R. A. Fine, and D. B. Olson, 2005: A global comparison of subtropical underwater formation rates. Deep-Sea Res., 52, 15691590, doi:10.1016/j.dsr.2005.01.011.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and L. Washburn, 1998: Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103, 53795395, doi:10.1029/97JC03422.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 36, 17221735, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc.,140, 814–825, doi:10.1002/qj.2161.

  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans—Description and validation. Climate Dyn., 38, 15211543, doi:10.1007/s00382-011-1115-0.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Prytherch, J., J. T. Farrar, and R. A. Weller, 2013: Moored surface buoy observations of the diurnal warm layer. J. Geophys. Res., 118, 45534569, doi:10.1002/jgrc.20360.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roca, R., M. Viollier, L. Picon, and M. Desbois, 2002: A multisatellite analysis of deep convection and its moist environment over the Indian Ocean during the winter monsoon. J. Geophys. Res., 107, doi:10.1029/2000JD000040.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, doi:10.1175/MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, doi:10.1175/JCLI3432.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702, doi:10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., T. G. Jensen, M. K. Flatau, S. Chen, W. Han, and C. Wang, 2013: Large-scale oceanic variability associated with the Madden–Julian oscillation during the CINDY/DYNAMO field campaign from satellite observations. Remote Sens., 5, 20722092, doi:10.3390/rs5052072.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. B. Lukas, 1997: Observations of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res. I, 44, 10551076, doi:10.1016/S0967-0637(96)00124-0.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., X. Li, K. M. Lau, and D. Adamec, 1997: Multiscale air-sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, doi:10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 136, 740754, doi:10.1002/qj.604.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, K. J. Heywood, J. Kaiser, and S. Schmidtko, 2014: Seaglider observations of equatorial Indian Ocean Rossby waves associated with the Madden–Julian oscillation. J. Geophys. Res. Oceans, 119, 37143731, doi:10.1002/2013JC009657.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730, doi:10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, doi:10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128, doi:10.1002/qj.4.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution Tech. Rep. OA-2008-01, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 790 420 78
PDF Downloads 473 176 15