Mechanisms of Multidecadal Atlantic Meridional Overturning Circulation Variability Diagnosed in Depth versus Density Space

Young-Oh Kwon Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Young-Oh Kwon in
Current site
Google Scholar
PubMed
Close
and
Claude Frankignoul Sorbonne (UPMC, University of Paris 06)-CNRS-IRD-MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by Claude Frankignoul in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.

Corresponding author address: Dr. Young-Oh Kwon, Physical Oceanography Department, Woods Hole Oceanographic Institution, MS #21, Woods Hole, MA 02543. E-mail: yokwon@whoi.edu

Abstract

Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.

Corresponding author address: Dr. Young-Oh Kwon, Physical Oceanography Department, Woods Hole Oceanographic Institution, MS #21, Woods Hole, MA 02543. E-mail: yokwon@whoi.edu
Save
  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Born, A., and T. F. Stocker, 2014: Two stable equilibria of the Atlantic subpolar gyre. J. Phys. Oceanogr., 44, 246264, doi:10.1175/JPO-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Born, A., T. F. Stocker, C. C. Raible, and A. Levermann, 2013: Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Climate Dyn., 40, 29933007, doi:10.1007/s00382-012-1525-7.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243248, doi:10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widman, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., F. Danabasoglu, N. Nakashiki, Y. Yoshida, D.-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19, 23822397, doi:10.1175/JCLI3757.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3 (CCSM3). J. Climate, 21, 55245544, doi:10.1175/2008JCLI2019.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, doi:10.1175/JCLI-D-11-00463.1.

    • Search Google Scholar
    • Export Citation
  • de Coëtlogon, G., C. Frankignoul, M. Bentsen, C. Delon, H. Haak, S. Massina, and A. Pardaens, 2006: Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr., 36, 21192135, doi:10.1175/JPO2963.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 14811495, doi:10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., and C. Frankignoul, 2008: Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J. Climate, 21, 49194933, doi:10.1175/2008JCLI1882.1.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, doi:10.1016/j.ocemod.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2013: The influence of the AMOC variability on the atmosphere in CCSM3. J. Climate, 26, 97749790, doi:10.1175/JCLI-D-12-00862.1.

    • Search Google Scholar
    • Export Citation
  • Gary, S. F., M. S. Lozier, C. W. Böning, and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res. II, 58, 17811797, doi:10.1016/j.dsr2.2010.10.059.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2007: Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Climate Dyn., 29, 745762, doi:10.1007/s00382-007-0263-8.

    • Search Google Scholar
    • Export Citation
  • Hermanson, L., R. Eade, N. H. Robinson, N. J. Dunstone, M. B. Andrews, J. R. Knight, A. A. Scaife, and D. M. Smith, 2014: Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys. Res. Lett., 41, 5167–5174, doi:10.1002/2014GL060420.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and H. M. Stommel, 1985: On the relation between the deep circulation and the Gulf Stream. Deep-Sea Res., 32, 11811193, doi:10.1016/0198-0149(85)90002-0.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Frankignoul, 2012: Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Climate Dyn., 38, 859876, doi:10.1007/s00382-011-1040-2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, doi:10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., and S. Häkkinen, 1999: On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep-Sea Res., 46, 877894, doi:10.1016/S0967-0637(98)00094-6.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., K. W. Dixon, T. Delworth, and W. Hurling, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 43354356, doi:10.1175/JCLI-D-12-00081.1.

    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., and T. M. Joyce, 2008: Variability in the slope water and its relation to the Gulf Stream path. Geophys. Res. Lett., 35, L03606, doi:10.1029/2007GL032183.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, doi:10.1175/JPO3178.1.

    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, doi:10.1175/JCLI-D-11-00443.1.

    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2014: Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Climate Dyn., 42, 2353–2365, doi:10.1007/s00382-014-2115-7.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996a: Dynamics of the Gulf Stream/deep western boundary current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr., 26, 21522168, doi:10.1175/1520-0485(1996)026<2152:DOTGSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996b: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr., 26, 21692182, doi:10.1175/1520-0485(1996)026<2169:DOTGSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840, doi:10.1175/JPO2932.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. D., and W. J. Schmitz, 1989: A limited area model of the Gulf Stream: Design, initial experiments, and model–data intercomparison. J. Phys. Oceanogr., 19, 791814, doi:10.1175/1520-0485(1989)019<0791:ALAMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 23592368, doi:10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 40674080, doi:10.1175/JCLI-D-11-00460.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., and G. Danabasoglu, 2012: Sensitivity of Atlantic meridional overturning circulation variability to parameterized Nordic Sea overflows in CCSM4. J. Climate, 25, 20772103, doi:10.1175/JCLI-D-11-00149.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate,25, 5173–5189, doi:10.1175/JCLI-D-11-00595.1.

  • Zhang, R., 2010a: Northward intensification of anthropogenically forced changes in the Atlantic meridional overturning circulation (AMOC). Geophys. Res. Lett., 37, L24603, doi:10.1029/2010GL045054.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010b: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, doi:10.1175/JPO3102.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. Jungclaus, 2008: Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dyn., 31, 731741, doi:10.1007/s00382-008-0383-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 527 205 15
PDF Downloads 352 100 11